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Abstract

The prevalence of relationships suggest that they offer significant benefits to partic-

ipants over spot transactions. However, some of these benefits might be self-enforcing

as spot markets feature scale efficiencies. We quantify the optimal balance between

relationship and spot transactions in the US truckload freight industry, where long-

term relationships with fixed-rate contracts dominate. We find that the incompleteness

of fixed-rate contracts limits relationship-level surplus, acting as a corrective tax on

relationship transactions. Overall, the current institution achieves 92% of the market-

level first-best surplus, outperforming both the relationship-optimal and spot-optimal

scenarios. A marginal increase in spot transactions would improve market-level welfare.

1 Introduction

Long-term relationships and spot transactions are ubiquitous—and typically competing—

features of the economy (Baker, Gibbons and Murphy, 2002). While spot transactions

present an outside option to relationships, making relational incentives harder to enforce,

the formation and high performance of relationships could result in a thinner and less efficient

spot market (Kranton, 1996). These counteracting forces mean that the observed balance

between relationship and spot transactions may deviate from the social optimum.
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Determining the direction of the deviation from this optimum—and therefore whether

policymakers should encourage more relationships or more spot transactions—is an impor-

tant empirical question. In recent years, digital spot platforms have disrupted various mar-

kets (e.g., ride-hailing, delivery) but have not made significant inroads in markets in which

relationships have traditionally played a central role.1 In such markets, do relationships

represent a barrier to a potentially more efficient market structure, or should they evolve to

better insulate themselves from the competitive pressure of spot transactions?

We study these questions in an economically important industry—US for-hire truckload

freight—where the interplay between long-term relationships and spot transactions is a cen-

tral feature. In this setting, 80% of transactions occur under long-term contracts that fix

rates but not volume, as compared to 20% by spot arrangements.2 While the incompleteness

of fixed-rate contracts exposes relationships to spot temptation, resolving this contractual

issue within relationships may exacerbate the inefficiency of the already-thin spot market.

We develop an empirical framework to quantify both of these economic forces and evaluate

the current market structure against alternative splits between relationship and spot trans-

actions. We find that social welfare would benefit from a marginal—but not a global—shift

toward spot transactions. This reflects both the substantial potential for scale efficiency in

the spot market and the substantial intrinsic benefits of relationships. Moreover, these find-

ings suggest that digital spot platforms that enhance spot market efficiency and complement,

rather than replace, relationships should be encouraged.3

In US for-hire truckload freight, a firm with demand for transportation service (“shipper”)

on an origin-destination pair (“lane”) hires a trucking company (“carrier”) for that service.

Two empirical advantages of this setting allow us to quantify both the rich dynamics within

shipper-carrier relationships and the intricate interplay between these relationships and the

spot market. First, shippers use transportation management systems (TMS) to automate

many aspects of their relationships with carriers. By utilizing the digital records of one

TMS used by 51 shippers across all of their contracted lanes, we observe the details of all

of these shippers’ relationships, including their offers, carriers’ responses, and the status of

each relationship at each point in time.4 Second, variation in transportation demand results

1Examples of such relationship-based markets can be found in supply chains (e.g., Boudreau, Cajal-Grossi
and Macchiavello, 2023), finance (e.g., Allen and Wittwer, 2023), and most labor contexts (BLS, 2024).

2In the context of the international coffee market, Blouin and Macchiavello (2019) find that fixed-rate
contracts expose relationships to strategic defaults but offer price insurance value. In the market for pulp,
Tolvanen, Darmouni and Essig Aberg (2021) show that buyers write quantity contracts to insure against
trading frictions in the spot market. Our paper does not seek to explain why long-term contracts in our
setting fix prices but not volumes. Our analysis takes this fixed-price feature as a given contractual friction,
focusing instead on its welfare implications.

3Providers of digital trucking solutions seem to share this view. For example, Uber Freight offers digital
spot option that can be integrated into shippers’ TMS for contract freight (Berdinis, 2024).

4Since each of these shippers interacts with multiple carriers across a broad set of lanes, our data exhibits
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in substantial temporal and cross-lane variation in spot rates and volumes. Our framework

exploits (i) temporal variation in spot rates to quantify relationship value and (ii) cross-lane

variation in spot volumes to quantify the link between spot market thickness and efficiency.

In Section 3, we begin our analysis by establishing two data patterns that highlight the key

tradeoff between the intrinsic benefits of relationships and scale efficiency of the spot market.

First, we find substantial within-auction variation in contract rates across carriers even after

controlling for potential differences in carriers’ costs. Moreover, we find that shippers do not

necessarily select the carrier with the lowest contract rate as the auction winner (“primary

carrier”), doing so in only two thirds of the auctions. These observations suggest that

both carriers and shippers care about non-price factors in long-term relationships. Second,

consistent with Hubbard (2001), we find that spot arrangements take a larger share of total

market volume on lanes with higher total demand. Scale efficiencies in the spot market offer

one potential explanation for this pattern.

In Section 4, we develop a model that captures institutional details of our setting and

the data patterns described above. At the relationship level, each relationship comprises

two stages. In the first stage, the shipper’s and carriers’ match-specific gains are drawn

from a distribution; the shipper holds an auction to select one carrier with whom to form a

relationship. In the second stage, the shipper and the winning carrier interact in a repeated

game. The strategy space of this repeated game is informed by our findings in Harris and

Nguyen (2025) on the nature of shipper-carrier interactions within relationships. In each

period of this game, the shipper decides based on the carrier’s past rejections whether to

terminate the relationship or to maintain the relationship and offer a load; the carrier decides

whether to accept the offered load, reject it in favor of a spot offer, or reject it to remain idle.

Delivering a load either within the relationship or on the spot market has some operational

cost. On top of this, a relationship transaction realizes match-specific gains while a spot

transaction incurs a search cost. At the market level, the spot market absorbs both direct

spot demand and unfulfilled relationship demand, pinning down the equilibrium spot rate

and volume. Moreover, search costs for spot loads might scale (inversely) with spot market

volume. Thus, relationships exert both pecuniary and non-pecuniary externalities on the

spot market.

In Section 5, we show that shippers’ and carriers’ primitives are identified from their

actions in the auction and repeated game. To identify carriers’ primitives, we exploit carriers’

optimal response to spot conditions in the repeated game. To build intuition, consider the

case in which carriers only face static incentives. When spot rates are sufficiently low, a

carrier accepts as long as his costs are low; when spot rates are sufficiently high, he never

national geographical coverage.
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accepts. At the critical spot rate at which acceptance drops to zero, the carrier is indifferent

between accept and spot. Thus, this critical spot rate pins down the carrier’s non-price gain

from the relationship, and the carrier’s acceptance to the left of this critical point reveals

information about his search and operational costs. Our formal identification argument

generalizes this intuition to allow for carriers’ dynamic incentives, which arise as shippers

punish carriers’ rejections with an increased likelihood of relationship termination. Finally,

to identify the causal link between search costs and spot market volume, we use as a demand

shifter the predicted trade flows between US states from Caliendo et al. (2018).

To identify shippers’ primitives, we exploit both carriers’ bidding and the shipper’s se-

lection of the winning carrier in the auction stage. In equilibrium, the shipper selects the

relationship with the highest total match-specific gains, and carriers effectively bid on how

to split these gains into carriers’ rents and shippers’ rents. Under empirically plausible con-

ditions, we show that there exists a monotone mapping between carriers’ rents—whose com-

ponents are either observed or already identified—and shippers’ rents. We adapt techniques

from Guerre, Perrigne and Vuong (2000) to pin down this mapping and recover shippers’

rents. Conditioning these rents on contract rates yields shippers’ match-specific gains.

In Section 6, we present our estimates of model primitives, showing that relationship

transactions generate large gains to the participating parties but also exert substantial neg-

ative externalities on the spot market. Specifically, we find that the median relationship

transaction generates $0.78/mile for the shipper and $0.68/mile for the carrier in relation-

ship premiums. These premiums are substantial; for context, consider that the average spot

rate over our sample period is $1.87/mile. Savings on search costs account for more than a

third of the total premium, and search costs account for about a third of carriers’ total cost

of servicing spot transactions. Crucially, we find that spot market thickness substantially

reduces search costs; doubling the spot market volume, for instance, would reduce search

costs by $0.36/mile.

In Section 7, we evaluate the current institution against alternatives that alter the per-

formance and share of relationships. At the relationship level, we find that the current

relationships generate substantial surplus of $0.64/mile to their participants over spot trans-

actions. However, this realized surplus represents only 64% of the relationship-level first-best

surplus. The latter could be achieved through index-priced contracts that are pegged one-

to-one to spot rates. These relationship-level findings explain the prevalence of relationships

in the truckload setting while suggesting strong incentives for relationships’ participants to

switch to more flexible contracts.

At the market level, we evaluate the optimal balance between relationship and spot

transactions while keeping fixed the aggregate demand and capacity. In our framework, a
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higher share of relationship transactions realizes more relationship benefits but also leads to

higher search costs. Directly, higher search costs burden spot carriers, and indirectly, create

stronger incentives to avoid search costs, rationalizing more relationship transactions with

negative intrinsic gains or high operational costs. To highlight the welfare implications of

the split between relationship and spot transactions, we trace out the highest achievable

welfare at each level of the spot market’s share of total market volume. Each point of this

constrained first-best welfare curve can be implemented by pairing index-priced contracts

with an appropriate tax on relationship transactions.

Our counterfactual analysis yields three main findings. First, relationships remain dom-

inant in the market-level first-best allocation, and the spot-only scenario is the lowest point

on the constrained first-best curve. This finding underscores the critical role of relationships

in our setting. Second, the current institution with fixed-rate contracts realizes 92% of the

market-level first-best surplus, marginally outperforming the zero-tax index-priced scenario.

This suggests that contractual frictions within current relationships hurt social welfare less

than the lack of scale in the current spot market. Third, and relatedly, marginally increasing

the share of spot transactions would improve social welfare. Our takeaway from this find-

ing is not that the government should tax relationship transactions—which is impractical.

Rather, this finding highlights the benefits of encouraging technological advances (e.g., algo-

rithmic matching and pricing) that enhance spot market efficiency; in addition to their direct

benefits to spot participants, such improvements would shift the equilibrium split between

relationship and spot transactions toward the market-level first-best.

Related literature. Our paper contributes to three main strands of literature. First, we

contribute to the literature on long-term relationships.5 Conceptually, the theoretical forces

at the heart of our analysis are closely related to those described by Kranton (1996). Kranton

posited that the two-way crowding-out effects between relationships and spot markets can

give rise to multiple equilibria—some in which relationships predominate and others in which

spot predominates—with no guarantee that the socially optimal equilibrium will be selected.

This theoretical result begs an empirical question: In markets where relationships and spot

markets coexist, can we determine whether there is too much or too little spot activity

relative to the social optimum? Our main contribution to this literature is an empirical

framework that allows us to quantify (i) the market-level tradeoffs between relationships

5This literature has established a rich set of empirical evidence on how long-term relationships generate
value for participating parties and respond to external factors. For example, value creation in long-term
relationships can arise from supply reliability (Adhvaryu et al., 2020; Cajal-Grossi, Macchiavello and Noguera,
2023), reputation building (Macchiavello and Morjaria, 2015), or relational adaptation (Barron et al., 2020).
Relationships may terminate (Macchiavello and Morjaria, 2015) or restructure (Gil, Kim and Zanarone,
2021) in the face of large shocks, and can be hampered by competition (Macchiavello and Morjaria, 2021).
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and spot and (ii) the welfare effects of shifting the market-level split between these two

modes of transaction.

Our approach to quantifying relationship primitives builds upon previous insights. Typi-

cal approaches rely on the conditions for dynamic enforcement (e.g., Startz, 2021) or optimal

contracting (e.g., Perrigne and Vuong, 2011; Brugues, 2020) and exploit variation in spot

market conditions to shift deviation profits (e.g., Macchiavello and Morjaria, 2015; Blouin

and Macchiavello, 2019). We similarly exploit carriers’ dynamic enforcement within rela-

tionships to recover their primitives. In doing so, however, we face two empirical challenges:

on-path terminations, which lead to short panels (Kasahara and Shimotsu, 2009), and par-

tially observed actions. We overcome these challenges by developing a dynamic discrete

choice framework (Rust, 1994) and a novel support-based argument on spot rates. We then

recover shipper primitives from the relationship formation process by formulating it as an

auction on rents. This auction-based approach (Guerre, Perrigne and Vuong, 2000; Asker

and Cantillon, 2008) allows us to remain agnostic about the shipper’s power to commit to a

punishment scheme within her relationship with the contract-winning carrier.

The ideas that (i) the stickiness of long-term bilateral interactions can result in market

inefficiencies and that (ii) such stickiness can arise endogenously are not unique to our setting.

In the liquefied natural gas market, for example, Zahur (2022) shows that contract lock-in

can lead to ex-post allocative inefficiencies. Similarly, in the context of containership leasing

contracts, Garcia-Osipenko, Vreugdenhil and Zahur (2025) show that private parties might

settle on contracts with socially inefficient duration.6 While we study conceptually similar

spillovers of long-term contracts, the underlying strategic behaviors differ due to the nature

of contracting in our setting: the LNG and containership settings feature full contractual

commitments, whereas ours features incomplete contracts sustained by relational incentives.

This means that market dynamics in our setting are shaped by strategic behaviors not

only at the formation stage, as in these other papers, but also throughout the course of

relationships.

Second, we contribute to the empirical literature on the efficiency of transportation mar-

kets. Previous work has shown that decentralized transactions generate search frictions,

resulting in spatial and temporal misallocation (e.g., Lagos, 2003; Frechette, Lizzeri and

Salz, 2019; Brancaccio, Kalouptsidi and Papageorgiou, 2020; Buchholz, 2022), a problem

6These contract choices, in turn, affects market thickness/thinness—and therefore efficiency. This idea
is related to liquidity externalities studied in financial markets, where a common solution is to centralize
transactions on a single platform (e.g., Admati and Pfleiderer, 1988). In the market for Canadian government
bonds, Allen and Wittwer (2023) show that market centralization is challenging because investors value
relationships and because dealer competition on the platform is low. More broadly, our paper relates to
other empirical studies on the spillovers across coexisting modes of transaction. Such coexistence could
generate quality dispersion (Galenianos and Gavazza, 2017), and market frictions could shift market modality
(Gavazza, 2010, 2011; Startz, 2021).
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that might be mitigated by large spot platforms with economies of density and pricing in-

struments.7 Our paper is similar to these other papers in examining scale efficiency of the

spot market but differs in our emphasis on the role of long-term relationships. A novel in-

sight of our paper is that while existing relationships are valuable to participating parties,

they might also serve as a market-level barrier to spot platform adoption.8

Finally, we contribute to the literature on trucking. Early comparisons of long-term

contracts and spot transactions in this industry showed that the former provide the benefit

of savings on transaction costs (Masten, 2009) and that the latter are more popular on thicker

lanes (Hubbard, 2001).9 Our analysis connects these insights by showing that transaction

costs in the spot market increase endogenously as more transactions occur in relationships

rather than in the spot market. This paper also builds upon our companion paper Harris and

Nguyen (2025), which used the same data to provide descriptive evidence on the interactions

within individual shipper-carrier relationships. While those findings inform how we model

individual relationships in the current paper, we go beyond this previous work in many

ways. Most notable is the focus of our current work on the market-level interactions between

relationships and spot transactions. We raise a general question—should relationships play

a more or less prominent role?—and answer it empirically in the context of US truckload

freight. Specifically, we develop a new structural framework to quantify the intrinsic value

of relationships and the scale efficiency of the spot market, assessing their tradeoff under

different market institutions.10

7These large platforms may also extract most of the surplus they create (e.g., Rosaia, 2023; Brancaccio
et al., 2023). Furthermore, platform efficiency depends on the specifics of its design, such as the sophistication
of the pricing rule (e.g., Castillo, 2023) or the mechanism for eliciting users’ heterogeneous preferences (e.g.,
Gaineddenova, 2022; Buchholz et al., 2024).

8Digital platforms have great potential, not only because they might leverage technology to facilitate
matching and pricing, but also because they can exploit various contractual and market designs. For example,
Faltings (2025) studies the efficiency of flexible contracts—which allow carriers to renege on accepted offers
at some reputational penalty—used by a pioneering digital brokerage. Despite this promise, digital spot
platforms account for a very small share of all trucking transactions. For example, in 2024Q4, Uber Freight
(the largest such platform) reported gross freight bookings of $1.273 billion (Uber Technologies, 2025),
representing less than 1% of total US for-hire trucking revenue.

9A related strand of literature studies asset ownership (Baker and Hubbard, 2003, 2004; Nickerson and
Silverman, 2003) and the effects of deregulation on the trucking industry (Marcus, 1987; Rose, 1985, 1987;
Ying, 1990). Since these earlier papers, significant improvements in how the trucking industry manages and
tracks shipper-carrier interactions have generated richer transaction-level data that has been exploited in
more recent studies. For example, the transportation and logistics literature has used such data to study
the effects of long-term relationships on participating parties, examining reciprocity (Acocella, Caplice and
Sheffi, 2020), factors that affect carriers’ value of relationships (Acocella, Caplice and Sheffi, 2022b), and
bilateral improvements from index pricing (Acocella, Caplice and Sheffi, 2022a).

10Given our primary interest in this relationship-spot tradeoff, we abstract from spatial allocation. Yang
(2023) studies the home bias of truck drivers using a spatial equilibrium model but focuses exclusively on
spot transactions.
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2 Institutional details

The US for-hire truckload freight industry offers an ideal setting for studying the market-

level tradeoff between long-term relationships and the spot market. This section provides

industry background and highlights two institutional features underlying this tradeoff: (i)

the incompleteness of long-term contracts and (ii) the fragmentation of spot transactions.

2.1 The US for-hire truckload freight industry

Trucking is the most important mode of transportation for US domestic freight. In 2019,

trucks carried 72% of domestic shipments by value.11 The US trucking industry comprises

four segments: for-hire truckload, private truckload, less-than-truckload, and parcel.

In this paper, we focus on the largest of these segments: for-hire truckload. In this seg-

ment, a shipper (e.g., manufacturer, wholesaler, or retailer) with a load (shipment) to be

transported on a lane (an origin-destination pair) on a specified date hires a carrier (i.e.,

trucking company) for that service.12 As the name suggests, a truckload shipment fills an

entire standard-sized truck. For-hire truckload carriers are therefore concerned about reduc-

ing miles traveled empty, and thus unpaid, but not about optimally combining shipments to

fill up their trucks, a concern relevant to less-than-truckload and parcel carriers. This means

that truckload carriers face simpler routing decisions and rely less on economies of scale, a

difference that accounts for the framgentation of the truckload segment, in contrast to other

segments (Ostria, 2003).13 To further reduce heterogeneity, our analysis focuses on dry-van

(as opposed to refrigerated, flatbed, or tanker) services and on long-haul lanes of at least

250 miles.

Shippers and carriers in the US for-hire truckload industry engage in two forms of trans-

actions: transactions within long-term relationships and spot transactions. Long-term rela-

tionships predominate, accounting for 80% of total transacted volume; spot arrangements

account for the remaining 20% (Holm, 2020b). The next subsections provide institutional

details for each of these market components.

11This statistic is calculated using data from the Bureau of Transportation Statistics.
12This is in contrast to private fleets, which are vertically integrated carriers serving a single shipper. Such

vertical contractual arrangements tend to be chosen by companies that prioritize quality and reliability of
service and those that have dense network of truck movements that allows for efficient routing.

13Bokher (2018) reports that the top 50 truckload fleets account for only about 10% of the segment’s total
revenue, and about 90% of truckload fleets have fewer than six trucks.
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2.2 Long-term relationships

Long-term relationships between shippers and carriers are formed via procurement auc-

tions. Such an auction begins with a shipper asking for proposals from various carriers. Each

carrier then submits a bid on a fixed contract rate to be charged on each load that the carrier

transports for the shipper within the contract period (typically one or two years). Contract

rates are accompanied by a fuel program, typically proposed by the shipper, that compen-

sates carriers for changes in fuel costs.14 Based on these bids, the shipper then chooses a

primary carrier, as well as a set of backup carriers who may receive requests for any loads

that the primary carrier rejects.15

Having established the primary carrier and contract rates, the shipper uses a Transporta-

tion Management System (TMS) to automate her shipment requests to the carriers. When

the shipper needs to transport a load on a lane, she inputs the details of the load into her

TMS. Requests are then sent out to the carriers sequentially in the order of their ranks until

a carrier accepts. Primary carriers are typically top-ranked, receiving all of the requests first,

and are expected to accept most of the requests they receive.16 Our analysis focuses on the

relationships between shippers and their primary carriers.

A crucial feature of this setting is that contracts between shippers and carriers are in-

complete, fixing rates but not volume. On the one hand, carriers can reject a load requested

by their contracted shippers without any legal recourse. On the other hand, shippers can

influence the number of requests each carrier receives by changing their ranks in the TMS.

That is, the initial ranking of carriers established in the auction is not permanent; rather, the

shipper can demote a primary carrier to a lower rank, replacing him with a backup carrier

at any time.

The fact that contracts between shippers and carriers are incomplete leaves room both for

potential opportunistic behaviors and for relational incentives to mitigate such opportunism.

Our previous paper, Harris and Nguyen (2025), presents empirical evidence on the dynamics

within shipper-carrier relationships. Three key insights from that paper will inform our mod-

14The most common fuel program calculates per-mile fuel surcharge as the per-mile difference between a
fuel index and a peg, (index−peg)/escalator, where “escalator” (miles/gallon) is a measure of fuel efficiency.
In practice, variation in the choice of the index, the peg, and the escalator has little impact on shippers and
carriers. For more details, see https://www.supplychainbrain.com/ext/resources.

15Typically, shippers ask for proposals on multiple lanes simultaneously and carriers are free to bid on a
subset of them. See Caplice (2007) for more details on this procurement process.

16The process of sequential requests is sometimes referred to as a “waterfall” process. Most carriers take
less than one hour to respond to a request, and the full waterfall process typically takes less than three
hours. While backup carriers do not necessarily know their exact ranks, primary carriers need to know their
(top) ranks so as to properly plan for future requests. Sometimes, due to specified capacity constraints of
the primary carriers, requests are sent first to backup carriers. Table 3 in Appendix C provides an example
of the sequential request process.
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eling choices in this paper. First, we documented that carriers behave opportunistically—

tending to reject loads within the relationship more frequently when spot rates are high

relative to contract rates—while shippers do not. Second, shippers deter such carrier op-

portunism by employing a termination strategy. In particular, frequent rejections by the

primary carrier increase the likelihood that he is permanently demoted from the primary

position and loses substantial future volume from the shipper.17 Third, this termination

strategy may not condition on the entire history of the shipper-carrier relationships across

the multiple lanes on which they interact. Rather, we found that when a shipper and an

asset-owner carrier transact on multiple lanes, a carrier’s rejection on lane ℓ may be pun-

ished by a demotion on lane ℓ, but will not be punished by a demotion on some other lane

ℓ′.18 This finding informs the unit of analysis in this paper: we consider relationships at the

shipper-carrier-lane level, rather than the shipper-carrier level.

2.3 Spot transactions

Spot transactions occur through multiple channels, all of which involve some degree of

search and haggling. For example, a shipper or carrier can use an electronic load board

either to post an available load or truck or to search existing posts. These load boards are

marketplaces from which both sides can obtain contact information of potential matches, but

rate negotiations are conducted offline. Shippers and carriers can also be matched either by

brokers or by digital matching platforms, which employ real-time matching and pricing. For

our purpose, we treat all of these channels as a single spot market with search or haggling

costs that potentially vary with spot market thickness.

3 Data

3.1 Data description

We obtain detailed data on the interactions between shippers and carriers within long-

term relationships (CHR, 2015-2019). This data was generated by the transportation man-

agement system (TMS) software offered by TMC, a division of C.H. Robinson, which is the

US’s largest logistics firm. For each shipper in our data set and each lane of that shipper, we

observe the details of all loads and requests. For each load, we observe the origin, destina-

17As we argued in the previous paper, the fact that demotions are permanent rules out the possibility that
learning, rather than punishment, explains the dynamics of shipper-carrier relationships.

18Harris and Nguyen (2025) finds evidence that, when deciding whether to terminate brokers’ primary
status, shippers consider brokers’ acceptances and rejections across all lanes. The current paper focuses
exclusively on asset-owner carriers.
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tion, distance, and activity date.19 For each request, we observe a timestamp, as well as the

carrier’s identity, contract rate, and accept/reject decision. We use the ordering of sequential

requests for a given load to identify primary carriers and demotion events. Observed changes

in carriers’ contract rates allow us to identify auction events.20

Our TMS data spans the period from September 2015 to August 2019. In total, we

observe 1.2 million loads and 2.3 million requests between 51 shippers and 1,933 carriers

on more than sixteen thousand origin-destination pairs. In Appendix D, we discuss the

representativeness of this sample. While we find that large carriers are overrepresented in

our sample relative to the population of all carriers, this is consistent with the fact that

large carriers are more likely to form relationships (Holm, 2020a). Moreover, comparing the

performance of carriers in our sample across the size distribution, we find little heterogeneity,

suggesting that any overrepresentation of large carriers is unlikely to bias our estimates.

Overall, 70.2% of loads are accepted by primary carriers, 19.7% by backup carriers, and

10.1% of loads are rejected by all contracted carriers and thus fulfilled in the spot market.

While carriers can either own assets or serve as brokers, our main analysis is restricted

to the relationships between shippers and asset-owner carriers. Furthermore, we focus on

primary carriers, their decisions, and their relationship status, treating loads fulfilled by

backup carriers as spot arrangements.21

We obtain spot data from DAT Solutions (DAT, 2015-2019), the dominant freight mar-

ketplace platform in the US and the leading vendor of spot market data. DAT partitions

the US into 135 Key Market Areas (KMAs). For each KMA-KMA lane, we observe weekly

summary statistics for spot rates and spot volume. We merge this information with our TMS

data using the TMS timestamps and origin-destination information. We exploit two kinds

of variation in this spot rate data: temporal variation in spot rates enables us to identify the

value of relationships, while cross-sectional variation in spot volume allows us to pin down

the link between spot market thickness and efficiency.

On average, a relationship has 2.5 load requests per week, lasts for five months, and has

25% probability of ending in a demotion. Over our sample period, spot rates and contract

rates average $1.87/mile and $1.83/mile, respectively. Both exhibit large and persistent dif-

19We also observe some performance measures, including whether carriers delivered shipments on time
and (for a subset of the data) the amount of time they spent at the destination unloading the shipment.

20See Appendix C for details of our data construction.
21Appendix E.1 compares the performance of asset-owners versus brokers and primary versus backup

carriers on three dimensions: load acceptance, on-time delivery, and detention time at destination. Brokers
accept more often but perform worse than asset-owners in other performance measures. This is because
brokers, as intermediaries connecting shippers to multiple carriers, have a different cost structure and a
different relationship with shippers than do asset owners. Backup asset-owner carriers also perform worse
than primary asset-owner carriers, with performance that, in many respects, resembles that of backup
brokers.
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ferences across lanes, with lane fixed-effects having a standard deviation (SD) of $0.50/mile.

However, there is substantially more temporal variation in spot rates (SD = $0.23/mile)

than in contract rates (SD = $0.12/mile), reflecting the fact that contracts fix rates over an

extended period of time. As a result, there are periods in which spot rates deviate substan-

tially from contract rates, potentially tempting shippers and carriers to defect from their

relationships. In recognition of these deviations between spot and contract rates over the

course of the “freight cycle,” our empirical analysis examines two separate market phases:

the “tight” (high-demand) phase includes the years 2017 and 2018; the “soft” (low-demand)

phase includes the remaining years.22 Table 4 in Appendix C provides key summary statistics

of our merged relationship and spot data.

3.2 Key facts

We begin by establishing two empirical facts that speak to the market-level tradeoff

between long-term relationships and spot transactions: (i) that relationships’ match-specific

gains are large and heterogeneous and (ii) that the spot market has potential scale efficiencies.

Fact 1. Relationships generate match-specific gains

At the auction stage, the patterns of carriers’ bidding and shippers’ selection of primary

carriers reflect substantial heterogeneity in how different shippers and carriers value poten-

tial relationships. First, examining bidding behavior, the left panel of Figure 1 plots the

distribution of contract prices (carriers’ bids) after residualizing auction fixed effects and

carrier-lane fixed effects.23 The latter set of fixed effects absorbs potential differences in car-

riers’ costs and regional specialization. We observe substantial variation in these residualized

bids, with a standard deviation of $0.22/mile. Such variation suggests that match-specific

gains from relationships play a critical role for carriers. Second, turning to shippers’ selec-

tion of primary carriers, the right panel of Figure 1 plots the difference between the bids of

the primary carrier and the lowest-bid backup carrier across auctions. In one-third of the

auctions, the primary carrier is not the lowest bidder, and in these instances, the median

primary-backup price gap is $0.16/mile. By revealed preference then, shippers care about

non-price factors when forming relationships with carriers.

Relationships’ match-specific gains could arise from a number of different sources. Ap-

pendix E.1 provides evidence on two potential sources of match-specific gains, showing that

primary carriers (i) are more likely to deliver goods on time and (ii) spend less time waiting

22See Figure 1 in Harris and Nguyen (2025) for a time series of average contract rates and spot rates.
23For this purpose, lanes are broadly defined: Census region of origin × Census region of destination.
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Figure 1: Suggestive evidence that non-price factors matter in relationships
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Note: Panel A: Observed contract prices are residualized on auction fixed effects and carrier-origin-
destination fixed effects, with origin and destination defined at the level of census regions. The
former set of fixed effects allows us to focus on within-auction variation in carriers’ bids; the latter
set of fixed effects further residualizes variation due to differences in carriers’ costs. The histogram
is at the bid level. Panel B: The histogram is at the auction level, plotting the difference between
the winning (primary) bid and the lowest losing (backup) bid.

at facilities relative to backup carriers.24 The former may result from better alignment of

a carrier’s capacity and other commitments with a shipper’s demand; the latter may re-

sult from better coordination between a shipper and a carrier when loading and docking.

Relationships can also differ in other dimensions, such as the consistency in the timing of

shipments, insurance policies, billing practices, and en-route communication.

Fact 2. Spot transactions take a larger share on higher-volume lanes

Next, we present suggestive evidence of scale efficiencies in the spot market. Intuitively,

if the spot market becomes more efficient as it becomes thicker, then there is an equilibrium

force that—all else equal—results in a higher share of spot transactions on lanes with higher

potential for total market volume. To test this hypothesis, we estimate the following cross-

sectional regression:

ln(Volumespotss′ /VolumeLTss′ ) = β0 + β1 ln(Volumetotalss′ ) + controlsss′ + ϵss′ . (1)

On each state-to-state lane, Volumespotss′ is the average number of load posts per week in the

spot market, VolumeLTss′ is the average number of loads accepted per week within long-term

relationships, and Volumetotalss′ is the total for-hire truckload volume in 2017 taken from the

Commodity Flow Survey. We run a log-regression to avoid scaling issues between different

24On average, primary carriers are 6 pp more likely to be on-time (baseline of 66 pp) and spend 11 minutes
less in detention time (baseline of 102 minutes) than backup carriers.
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Table 1: Suggestive evidence of scale efficiency in the spot market

ln(Volumespot/VolumeLT) (OLS1) (OLS2) (IV1) (IV2)

ln(Volumetotal) −0.0608 0.0324 0.130 0.226
(0.036) (0.032) (0.040) (0.068)

ln(distance) −0.249 −0.297 −0.197 −0.0994
(0.075) (0.065) (0.070) (0.090)

Frequency −0.0821 −0.0803 −0.0786
(0.013) (0.013) (0.013)

Inconsistency 1.176 1.213 1.249
(0.071) (0.071) (0.075)

Instruments
Predicted trade (Caliendo et al., 2018) ✓
Origin & destination densities ✓

Note: Frequency is the median average monthly volume of a shipper on a lane; Inconsistency
is the median coefficient of variation of a shipper’s loads in a week over the four weeks of
a month. These regressions aggregate observed spot and long-term relationship volumes to
the state-to-state level, resulting in 1250 state-to-state observations. All specifications include
indicators of a lane’s origin or destination being in the Midwest to control for the Midwest’s
overrepresentation in our microdata.

data sets. An estimate of β1 > 0 would be consistent with our hypothesis that the spot

market’s share of total market volume increases with total market volume.

Table 1 presents our estimates of equation (1). Compared to the baseline specification

(OLS1), (OLS2) includes controls for demand characteristics. The last two specifications fur-

ther isolate unobserved cost factors by instrumenting for total volume with demand shifters.

(IV1) uses predicted state-to-state trade flows (Caliendo et al., 2018), and (IV2) uses ori-

gin and destination population densities.25 Our preferred specification (IV1) suggests that

doubling market thickness could increase spot share on a lane from 20% to 33%. This large

quantitative effect suggests a potentially strong link between spot market thickness and

efficiency.

25Demand characteristics included in (OLS2) are the frequency and timing consistency of shipments. As
expected, more frequent and consistent demand is more desirable to carriers, favoring relationship over spot
transactions. (IV1) proxies for demand on state-to-state lanes by the calibrated trade flows in Caliendo
et al. (2018). Their model captures input-output linkages between difference sectors, labor mobility, and
heterogeneous productivities; they calibrate this model to 2012 data aggregating trades across all modes of
transportation. Since there might still be endogeneity concerns with using calibrated trade flows, we include
for robustness (IV2), which proxies demand simply by origin and destination densities. This latter method
suggests an even stronger connection between market thickness and the desirability of spot transactions.
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Figure 2: Model overview
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4 Model

With the goal of quantifying the market-level value of long-term relationships, we develop

a model that captures both (i) the dynamics of shipper-carrier interactions within relation-

ships and (ii) the market-level interactions between these relationships and the spot market.

We will describe these two components in turn. First, we describe equilibrium behaviors

within individual relationships, taking the market processes as given. Second, we describe

the equilibrium conditions that give rise to these market processes. Figure 2 provides an

overview of our model.

4.1 Individual relationships

4.1.1 Model primitives: timing, actions, and payoffs

A relationship between a shipper i and carrier j on lane ℓ comprises a formation stage

(t = 0) and a repeated game (t ≥ 1). In the formation stage, shipper i holds an auction

a to select a primary carrier. At the beginning of this auction, the shipper announces the

expected frequency of interactions δiaℓ = δ. A set Ja of N carriers arrive. For each j′ ∈ Ja,

a pair of shipper-carrier match-specific gains (ψij′ℓ, ηij′ℓ) are drawn i.i.d. from a distribution

Gψ,η
ℓ . The shipper’s match-specific gain ψij′ℓ is observable both to her and to carrier j′
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while the carrier’s match-specific gain ηij′ℓ is privately known to carrier j′ alone.26 Then,

each carrier j′ proposes a contract rate pij′ℓ. Finally, shipper i either chooses to form a

relationship with some carrier j ∈ Ja (called the primary carrier) or chooses to always go to

the spot market.

If shipper i chooses j as the primary carrier, they then interact repeatedly until the

shipper terminates the relationship. In each period t ≥ 1, there is a new spot rate p̃ℓt and a

draw cjℓt ∼ Fℓ of carrier j’s operational cost. The spot rate is observed by both the shipper

and carrier; the operational cost is privately observed by the carrier. Given the observed

spot rate, the shipper decides whether to maintain or end her relationship with the carrier.

If the relationship is ended, both the shipper and carrier resort to the spot market for all

future transactions. If, on the other hand, the relationship is maintained, the shipper offers

a load to the carrier at price pijℓ. Observing the spot rate and his costs, the carrier chooses

dt ∈ {accept, spot, idle}: dt = accept if the carrier accepts the offered load; dt = spot if

the carrier rejects the offered load to serve the spot market; and dt = idle if the carrier

rejects and remains idle. The shipper only observes whether the carrier accepts or rejects

her load—that is, whether dt = accept or dt ∈ {spot, idle}.
The instantaneous payoffs of the shipper and the carrier in period t of the repeated game

depend on their actions as follows. The shipper gets a period-t payoff of uijℓt = ψijℓ − pijℓ

if her load is serviced by the contracted carrier; otherwise, the shipper gets service from

the spot market and pays the spot rate, uijℓt = −p̃ℓt. The carrier gets a period-t payoff of

vijℓt = ηijℓ+ pijℓ− cjℓt when servicing the contracted shipper’s load and vijℓt = p̃ℓt− κℓ− cjℓt

when servicing a spot load; otherwise, vijℓt = 0. Here, ψijℓ is the shipper’s match-specific

gain from transacting with the carrier on lane ℓ; ηijℓ is the carrier’s match-specific gain from

transacting with the shipper on lane ℓ; pijℓ is the contract rate established in the auction;

and κℓ is the carrier’s cost of searching for a spot load on lane ℓ. Thus, relative to a spot

transaction, a relationship transaction yields non-price premiums of ψijℓ to the shipper and

ηijℓ + κℓ to the carrier.

4.1.2 Equilibrium behaviors

We derive the equilibrium behaviors of individual shippers and carriers by working back-

wards. First, we derive carriers’ optimal play in the repeated game. This yields the expected

payoffs of a shipper and a carrier in a relationship as functions of their per-transaction rents.

26This informational assumption matches features of the communication process between shippers and
carriers. When asking for proposals, a shipper details her preferences for the service on a lane, and carriers
respond with proposals explaining how they can meet such preferences. It is harder for the shipper to
know how much carriers value their relationships, since this further depends on carriers’ internal operations,
including their contracts with other shippers on other lanes.
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Taking these expected payoffs as input, we then derive carriers’ optimal bidding and shippers’

optimal selection of primary carriers in auctions for fixed-rate contracts, which we transform

into auctions over per-transaction rents. For tractability, we make the following assumption

on agents’ beliefs about the market processes and on shippers’ strategy.

Assumption 1. The following hold for all shippers and carriers.

(i) (Agents’ beliefs about market processes) Shippers and carriers take the market processes

as given. In particular, they perceive that the spot rate p̃ℓt on lane ℓ follows an AR(1)

process Pℓ and that search cost κℓ = κ(Volumespotℓ ) is a function of the average spot

volume on lane ℓ.

(ii) (Shippers’ punishment scheme) Each shipper conditions relationship termination on

an index summarizing her primary carrier’s past rejections, defined recursively by IR :

(Rt−1, dt) 7→ Rt = αRt−1 + (1 − α)1{dt ̸= accept}, with known α and R0. Moreover,

the probability σ0 : (Rt−1, p̃t) 7→ [0, 1] of the shipper terminating her relationship with

the carrier is a function of only the carrier’s rejection index and current spot rate.27

These assumptions have two key advantages. First, they imply that relationships evolve

with a Markov state (Rt−1, p̃ℓt). This is the minimal state space that both allows carriers’

past rejections to influence relationship termination and captures the autocorrelated nature

of the spot process. Second, the assumption that shippers’ punishment schemes do not

depend on match-specific gains simplifies our identification argument. An alternative ap-

proach that allowed the punishment scheme to vary with match-specific gains and exploited

its optimality for identification of these gains would be sensitive to modeling assumptions

on shippers’ commitment power and strategy space.28 Thus, we treat shippers’ punishment

scheme as given and, rather than attempting to rationalize its optimality, focus instead on

the optimality of shippers’ behaviors on other decision margins. Similarly, our counterfactual

analyses do not require taking a stance on how shippers choose punishment schemes, as we

focus on counterfactual scenarios that eliminate contractual frictions—and thus the need for

such schemes.

27For estimation, we will allow punishment schemes to depend on observables of relationships.
28In settings where principals can commit to dynamic contracts that feature flexible transfers, identification

follows from the interim first-order conditions (e.g., Brugues, 2020). This approach does not apply to our
setting due to the lack of flexible transfers. The alternative approach that assumes no commitment power
from shippers faces other challenges. First, one set of parameters can lead to multiple equilibria—a classic
prediction in the literature on repeated games (Fudenberg and Maskin, 1986). Second, classic results do not
readily explain the empirical observation that on-path demotions of primary carriers occur and are almost
always permanent (Harris and Nguyen, 2025). In this previous paper, we also found evidence supporting the
presence of shippers’ commitment in relationships with large asset-based carriers.
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Repeated game. In each period of the repeated game, the carrier weighs his current payoff

against how his decision would affect the probability of relationship termination in future

periods. Denote by σijℓ : (Rt−1, p̃ℓt) 7→ {accept, spot, idle} the carrier’s optimal Markov

strategy that breaks ties in favor of acceptance.

We can show that the carrier’s optimal decision in each period t reduces to choosing the

maximum among: 
p̄ijℓ(Rt−1, p̃ℓt)− c̃jℓt , if dt = accept

p̃ℓt − c̃jℓt , if dt = spot

0 , if dt = idle,

(2)

where c̃jℓt ≡ cjℓt+κℓ is the transformed cost—the carrier’s cost of servicing a spot load—and

p̄ijℓ(Rt−1, p̃ℓt) (3)

≡ ηijℓ + pijℓ + κℓ︸ ︷︷ ︸
relationship premium

+
δ

1− δ
(Vijℓ(αRt−1, p̃ℓt)− Vijℓ(αRt−1 + (1− α), p̃ℓt)︸ ︷︷ ︸

dynamic compensation

is the carrier’s full compensation—how much he is compensated for an acceptance. Here,

Vijℓ(Rt, p̃ℓt) is the expected payoff of the carrier at the beginning of the next period following

state (Rt, p̃ℓt) at the end of period t. Together, equations (2) and (3) characterize optimal

carrier decision-making and highlight how the benefits of accepting a relationship load versus

taking a spot load shape carriers’ decisions. When accepting a relationship load, the carrier’s

direct benefits include his per-transaction rent and his savings on search costs. Further,

accepting a relationship load yields dynamic compensation equal to the difference in expected

payoffs were he to accept versus were he to reject the offered load. This difference is positive

if the shipper punishes a higher rejection rate with a higher likelihood of demotion.

Together, the shipper’s punishment scheme σ0 and the carrier’s optimal strategy σijℓ

determine the expected payoffs of each relationship. Following Markov state (Rt−1, p̃ℓt−1),

the expected payoffs of shipper i and carrier j on lane ℓ are respectively as follows:

Uijℓ(Rt−1, p̃ℓt−1)

=EFℓ,Pℓ


(1− σ0(Rt−1, p̃ℓt))

×

(
1{σijℓ(Rt−1, p̃ℓt) = accept} (δ(ψijℓ − pijℓ) + (1− δ)Uijℓ(αRt−1, p̃ℓ))

+1{σijℓ(Rt−1, p̃ℓt) ̸= accept} (−δp̃ℓt + (1− δ)Uijℓ(αRt−1 + 1− α, p̃ℓ))

)
+σ0(Rt−1, p̃ℓt)U(p̃ℓt)

∣∣∣∣∣∣∣∣∣∣
p̃ℓt−1



18



and

Vijℓ(Rt−1, p̃ℓt−1)

=EFℓ,Pℓ


(1− σ0(Rt−1, p̃ℓt))

×

(
(1− δ)max{p̄(Rt−1, p̃ℓt)− c̃jℓt, p̃ℓt − c̃jℓt, 0}

+δVijℓ(αRt−1 + 1− α, p̃ℓt)

)
+σ0(Rt−1, p̃ℓt)V (p̃ℓt)

∣∣∣∣∣∣∣∣∣∣
p̃ℓt−1

 .

Here, V (p̃ℓt) and U(p̃ℓt) are the termination payoffs of the carrier and shipper, respectively,

given the current spot rate p̃ℓt.

Shippers’ and carriers’ expected payoffs from the repeated game form the basis for car-

riers’ bidding and shippers’ selection of the primary carrier in the auction. Two modeling

assumptions help us discipline these expected payoffs. First, carriers bidding on the same

lane differ only in the match-specific gains (ψijℓ, ηijℓ) that they would generate in a rela-

tionship with the shipper. As a result, the shipper’s and carrier’s expected payoffs from a

potential relationship depend only on the resulting per-transaction rents: (ψijℓ − pijℓ) for

the shipper and (ηijℓ + pijℓ) for the winning carrier. Second, since the shipper’s punishment

scheme does not condition on carriers’ identities or bidding behaviors, each carrier’s expected

payoff depends only on his own per-transaction rent. In contrast, the shipper’s expected pay-

off depends both on her own per-transaction rent and on the carrier’s per-transaction rent.

This is because the shipper’s rent is realized only when the carrier accepts, and acceptance

is more likely when the carrier’s rent is higher. To highlight the role of per-transaction rents

in the auction, we henceforth write the expected payoffs of a shipper and a carrier at the

beginning of a relationship as functions of their rents: U(R0, p̃ℓ0|ψijℓ − pijℓ, ηijℓ + pijℓ) and

V (R0, p̃ℓ0|ηijℓ + pijℓ), respectively.

Auction. For the auction stage, we focus on the class of symmetric monotone equilibria.

The key advantage of this class is that it reduces the auction in our setting to an auxiliary

first-price auction in which carriers propose effective bids and the shipper selects the carrier

with the highest such bid. Denote by θijℓ ≡ ψijℓ + ηijℓ ∈ Θ the total match quality between

shipper i and carrier j on lane ℓ, and denote by Gθ
ℓ its distribution. We define symmetric

monotone equilibria formally as follows.

Definition 1. (Symmetric monotone equilibrium) In a symmetric monotone equilibrium,

there exists a differentiable function b : Θ → R such that:

(i) (Single indexing) The shipper’s rent is ψijℓ − pijℓ = b(θijℓ). The carrier’s rent is

ηijℓ + pijℓ = θijℓ − b(θijℓ).
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(ii) (Monotonicity) Both of these rents, b(θijℓ) and θijℓ − b(θijℓ), are strictly increasing in

θijℓ.

(iii) (Optimal bidding) Carriers choose their effective bids optimally for all θijℓ,

b(θijℓ) = argmax
b
Gθ
ℓ(b

−1(b))N−1(V (R0, p̃ℓ0|θijℓ − b)− EFℓ,Pℓ
[V (p̃ℓ1)|p̃ℓ0]).

(iv) (Optimal selection of the primary carrier) The shipper chooses the carrier j with the

highest effective bid subject to the shipper’s expected payoff from that relationship

being no less than that of her outside option,

j ∈ argmax
j′∈Ja

b(θij′ℓ) s.t. U(R0, p̃ℓ0|b(θijℓ), θijℓ − b(θijℓ)) ≥ EPℓ
[U(p̃ℓ1)|p̃ℓ0].

(v) (Optimal response to shipment requests) If j is the primary carrier, j uses the optimal

strategy σijℓ : (Rt−1, p̃ℓt) 7→ {accept, spot, idle} in the repeated game, defined by

equation (2) for carrier rent of θijℓ − b(θijℓ).

Most substantive in this definition are the first two equilibrium selection conditions.

Specifically, condition (i) says that in equilibrium, match-specific gains affect auction out-

comes only via the total match quality. That is, the resulting rents of the shipper and the

carrier depend on the competitiveness of the auction and on both sides’ outside options, but

not on how much each side contributes to the total match quality. As a result, total match

quality is the sufficient statistic for match-specific gains in determining auction outcomes.

In addition, condition (ii) says that in equilibrium, both the shipper and the carrier strictly

benefit from higher total match quality. This allows the shipper to simply select the carrier

that proposes the highest shipper rent, as that carrier also secures the highest carrier rent

and will thus accept most frequently among all carriers.29

Under conditions (i) and (ii), our bidding game can be transformed into an auxiliary first-

price auction with symmetric bidding function b : Θ 7→ R. This transformation gives rise

to condition (iii) for carriers’ bidding and condition (iv) for shippers’ selection of primary

carriers. Condition (v) follows from our analysis of the repeated game. In Appendix B,

we provide sufficient conditions for the existence of symmetric monotone equilibria and our

empirical verification of these sufficient conditions.30

29Conditions (i) and (ii) are analogous to those of Nash bargaining (Nash, 1953). First, both parties’
payoffs depend only on their joint surplus, outside options, and bargaining power. That is, contract prices in
our setting are analogous to transfers in Nash bargaining models; in relationships with the same total match
quality but different match-specific gains, equilibrium contract prices move to maintain the same split of this
match quality into per-transaction rents. Second, as long as both parties have positive bargaining power,
their payoffs under Nash bargaining are strictly increasing in the joint surplus.

30More precisely, the transformation of our bidding game into an auxiliary first-price auction on shipper
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4.2 Market dynamics

While the individual relationship-level dynamics addressed in the previous subsection

are central to identifying key model primitives—such as match-specific gains or search and

operational costs—, our analysis of market-level welfare further depends on the dynamic

interactions between relationships and the spot market as a whole. These market-level

dynamics depend on (i) the stock of relationships and (ii) shocks to demand and capacity.

In our welfare analysis, we keep (ii) fixed and vary the role and performance of relationships.

This subsection explains how relationship dynamics evolve and how the market clears under

the current market institution. The market dynamics under counterfactual institutions are

detailed in Appendix G.

We treat as exogenous and fixed the following demand and capacity shocks: the measure

of shippers who hold RFPs for long-term contracts on lane ℓ in period t, denoted L∗
ℓt; shocks

to direct spot demand, denoted D∗
ℓt; and shocks to carrier capacity, denoted C∗

ℓt.
31 Condi-

tional on these shocks, market dynamics are driven by two processes: first, the creation and

termination of relationships and, second, carriers’ decisions both within relationships and in

the spot market. The former affects the stock of relationships and the latter affects the states

of these relationships, summarized by the collection Hℓt−1 = (ψijℓ − pijℓ, ηijℓ+pijℓ, Rijℓ,t−1)ijℓ

of shippers and carriers’ rents and carriers’ rejection indices. We describe each of these pro-

cesses in turn below.

First, the formation and termination of relationships determine the mass of relationships,

the direct spot demand, and the direct spot capacity at the beginning of period t. We denote

these objects respectively by Lℓt(p̃ℓt|Hℓt−1), Dℓt(p̃ℓt|Hℓt−1), and Cℓt(p̃ℓt|Hℓt−1). The change

in the mass of relationships from one period to the next is determined by two factors: the

fraction of shippers in L∗
ℓt−1 who successfully formed new relationships in period t − 1 and

the termination of existing relationships at the beginning of period t by shippers according

to their punishment scheme σ0. Recall that this punishment scheme depends on carriers’

rejection indices (contained in Hℓt−1) and on the current spot rate p̃ℓt.

The creation and termination of relationships also affect direct spot demand and capacity.

On the demand side, shippers who failed to form new relationships in period t−1, along with

those who terminated relationships at the beginning of period t, contribute to direct spot

rents also depends on the following information assumptions: (ψijℓ, ηijℓ) are drawn i.i.d. across carriers; ψijℓ

is known by shipper i and carrier j; ηijℓ is privately known by carrier j. These assumptions imply that (i)
total match qualities θijℓ are i.i.d. across carriers, and (ii) when bidding a contract rate pijℓ, the carrier
effectively chooses the shipper’s per-transaction rent, b(θijℓ) = ψijℓ − pijℓ.

31Our model does not take a stance on why shippers might want to hold RFPs versus not, since we do not
observe this decision margin. In practice, shippers who hold RFPs tend to be larger shippers with relatively
consistent demand for shipments over a long period of time. Similarly, we treat shocks to trucking capacity
as exogenous—an assumption that is likely to hold in the medium (but not long) run.
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demand in period t. On the supply side, carriers who formed new relationships exit the pool

of spot carriers, while those whose relationships were terminated re-enter this pool. Appendix

G details this evolution of demand and capacity over time under additional assumptions on

the evolution of the underlying shocks (L∗
ℓt, D

∗
ℓt, C

∗
ℓt).

32

Second, carriers’ decisions determine realized relationship volume and spot volume, ulti-

mately clearing the market. Recall from equation (2) that within a relationship, the carrier’s

decision to accept the shipper’s load, reject it to service the spot market, or reject it to remain

idle depends on which is the highest among the following: the carrier’s full compensation p̄

for an acceptance, the spot rate p̃ℓt, or the sum cjℓt+κℓ of operational and search costs. Thus,

the aggregate share of carriers within relationships that accept relationship loads depends on

the distribution µ(·|p̃ℓt,Hℓt−1) of full compensation p̄ across relationships. Additionally, car-

riers without relationships service spot loads only if their costs are sufficiently low. Together,

these result in the following spot-market clearing condition:

Lℓt(p̃ℓt | Hℓt−1)

(
1−

∫ ∞

p̃ℓt

Fℓ(p̄− κℓ)dµℓt(p̄|p̃ℓt,Hℓt−1)

)
︸ ︷︷ ︸

Overflow demand

+Dℓt(p̃ℓt | Hℓt−1)︸ ︷︷ ︸
Direct spot demand

(4)

= (Lℓt(p̃ℓt | Hℓt−1)µℓt(p̃ℓt|p̃ℓt,Hℓt−1)︸ ︷︷ ︸
Overflow capacity

+Cℓt(p̃ℓt | Hℓt−1)︸ ︷︷ ︸
Direct spot capacity

)Fℓ(p̃ℓt − κℓ).

This equation captures the crowding-out effect of the spot market on relationships: carriers

whose full compensations are lower than the current spot rate go to the spot market, in-

creasing spot capacity, while shippers’ loads that are rejected within relationships must be

fulfilled in the spot market.

Finally, to discipline the crowding-out effect of relationships on the spot market, we

assume that search cost κℓ = κ(Volumespotℓ ) is a function of the average spot volume. This

scale-efficiency relation, combined with the market clearing conditions in each period and

the relationship dynamics described above, determines the equilibrium search cost κℓ and

the equilibrium path {p̃ℓt} of spot rates.33

32These assumptions are imposed for the estimation of the underlying demand and capacity shocks, as
described in Appendix G.

33Note that depending on the dynamics of the underlying demand and capacity shocks (L∗
ℓt, D

∗
ℓt, C

∗
ℓt), the

equilibrium path of spot rates can often be reasonably approximated by an autocorrelated process. The
assumption that individual shippers and carriers perceive the spot rate process as AR(1), rather than a
higher-order autocorrelated process, is made to simplify estimation by limiting the state space in carriers’
discrete choice problem. Similarly, search costs could, in principle, depend on the current spot volume
Volumespotℓt rather than its average over time. However, allowing for this would require expanding the state
space to include current spot volume. This would pose no problems for identification, but would complicate
estimation.
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5 Identification

This section provides intuition for our identification argument, which is formalized in

Theorem 1. We identify model primitives sequentially, focusing on the repeated game for

carrier primitives and on the auction for shipper primitives.

Suppose that in each relationship, we observe the contract rate pijℓ, the duration Tijℓ, and,

for each period t ≤ Tijℓ, the spot rate p̃ℓt and whether the carrier accepts (dijℓt = accept) or

rejects (dijℓt ∈ {spot, idle}). Furthermore, suppose that we observe the number na of bidders

in each auction who pass the shipper’s individual rationality constraint.34 Objects that

we do not observe and want to identify are the lane-specific distribution Fℓ of operational

costs, search cost κℓ, the shipper’s punishment scheme σ0, and the distribution Gψ,η
ℓ of

match-specific gains across relationships. Our identification argument relies on the following

assumptions, which will be maintained throughout our analysis.

Assumption 2. (Regularity) Assume the following regularity conditions:

(i) The AR(1) spot process Pℓ as perceived by individual shippers and carriers has support

R+ for all p̃ℓt−1.

(ii) The shipper’s punishment scheme satisfies σ0(Rt−1, p̃ℓt) < 1 for all (Rt−1, p̃ℓt).

(iii) The underlying distribution of match-specific gains Gψ,η
ℓ has full support in R2. More-

over, it induces an underlying distribution of match quality Gθ
ℓ ≡ Gψ+η

ℓ that has a

strictly decreasing hazard rate, gθℓ/G
θ
ℓ .

35

(iv) The distribution Fℓ of operational costs is Normal(µcℓ, σ
c).

(v) There is a demand shifter zℓ independent of operational costs.

Assumption 3. (Properties of full compensations) Given the perceived spot process Pℓ and
the punishment scheme σ0, the full compensation p̄(Rt−1, p̃ℓt|η + p) is:

(i) strictly increasing in the carrier’s rent η + p for all (Rt−1, p̃ℓt),

(ii) continuous in p̃ℓt for all Rt−1 and η + p,

(iii) bounded below by η + p+ κℓ for all (Rt−1, p̃ℓt).

Note that Assumption 3 is essentially an assumption on the underlying spot process

and the shipper’s punishment scheme. The most substantive assumption is 3(i), which

can be numerically verified. Assumption 3(ii) holds under mild regularity conditions, and

Assumption 3(iii) is satisfied if the shipper’s punishment scheme σ0 is strictly increasing in

the carrier’s rejection index Rt−1.

34These are bidders that become either primary or backup carriers.
35As one example, the Normal distribution has this strictly decreasing hazard rate property.
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Theorem 1. (Full identification) Under Assumptions 2 and 3 and within the class of sym-

metric monotone equilibria, (σ0, N, (Pℓ, Gψ,η
ℓ )ℓ) are identified, and cost parameters (Fℓ, κℓ)ℓ

are identified up to a constant.

The perceived spot process Pℓ is identified as the AR(1) process that best fits the realized

path of spot rates. The shipper’s punishment scheme σ0 is identified, since every Markov state

(Rt−1, p̃ℓt) is observed under Assumption 2.36 The number N of bidders is identified from the

number of carriers observed in the routing guide. Given these instrumental objects, we now

identify the distribution Fℓ of operational costs, search cost κℓ, and the joint distribution

Gψ,η
ℓ of shippers and carriers’ match-specific gains on each lane. In the next subsections, we

describe the key lemmas and delegate the formal proof of Theorem 1 to Appendix A.

5.1 Identifying carrier primitives from the repeated game

The key object in our identification of carrier primitives is carriers’ tendency to accept

a load at each Markov state of their relationships. Such tendency depends only on carriers’

transformed rent ηijℓ + pijℓ + κℓ and the distribution F̃ℓ of transformed costs c̃jℓt = cjℓt +

κℓ ∼ Normal(µcℓ + κℓ, σ
c).37 First, we argue that the level, shape, and variation of this

acceptance tendency across carriers, as captured by their acceptance schedules, allow us to

separately identify the distribution of their transformed rents and the distribution of their

transformed costs. Then, we exploit the demand shifter zℓ to decompose transformed costs

into operational and search costs.

Definition 2. (Acceptance schedules) Fix the shipper’s punishment scheme σ0, the carrier’s

rent ηijℓ + pijℓ, and lane characteristics (Pℓ, Fℓ, κℓ). Carrier j’s acceptance schedule is that

carrier’s tendency to accept a load at each Markov state (Rt−1, p̃ℓt),

Pr(dt = accept|Rt−1, p̃ℓt) = 1{p̄(Rt−1, p̃ℓt) ≥ p̃ℓt}F̃ℓ(p̄(Rt−1, p̃ℓt)).

To build intuition as to why carriers’ transformed costs and transformed rents can be

separately identified from their acceptance schedules, consider a low-rent carrier and a high-

rent carrier on the same lane, both with cost parameters (Fℓ, κℓ). The first two panels of

Figure 3 plot, for a fixed rejection index, the full compensations of the low-rent carrier (black

line) and high-rent carrier (blue line) as well as their optimal decisions, in the space of spot

36Specifically, in Assumption 2, (i) ensures that every level of spot rate is observed, regardless of the
current rejection index; (ii) ensures that every Markov state is non-absorbing; and (iv) ensures a strictly
positive probability of both acceptance and rejection in any Markov state.

37To see why, notice that the period-t payoff of carrier j can be rewritten as (ηijℓ + pijℓ + κℓ)− c̃jℓt if he
accepts, as p̃ℓt − c̃jℓt if he services the spot market, and as 0 otherwise.
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Figure 3: Optimal decisions and acceptance schedules for a fixed rejection index
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rate (x axis) and transformed cost (y axis). As spot rate increases, the gap between the

full compensation associated with each rent level and the spot rate shrinks, with the full

compensation schedule crossing the 45-degree line at a critical point p∗. The carrier decides

between accept and idle when spot rate is lower than p∗, between spot and idle when spot

rate is higher than p∗, and is indifferent between accept and spot exactly at p∗. This means

that at p∗, the acceptance probability—which is the observed probability mass on the green

vertical line—approximates the probability that the carrier chooses spot over idle locally to

the right of this spot rate—which is the unobserved probability mass on the red vertical line,

lim
p̃t↑p∗

Pr(dt = accept|Rt−1, p̃t) = F̃ℓ(p
∗) = lim

p̃t↓p∗
Pr(dt = spot|Rt−1, p̃t) > 0. (5)

Moreover, since the carrier never accepts when p̃t > p∗, the point (p∗, F̃ℓ(p
∗)) manifests as

a jump point identifiable from the carrier’s acceptance schedule.

The third panel of Figure 3 translates the optimal decisions of the low-rent and high-rent

carriers in the first two panels into their acceptance schedules, whose distinct jump points

trace the common distribution F̃ℓ of transformed costs. As shown in the first and second

panels, increasing a carrier’s rent shifts out his full compensation. As a result, the critical

points of the low-rent and high-rent carriers—and thus their corresponding jump points—are

strictly ordered in their rents, p∗low < p∗high.
38 In summary, within-lane variation in carrier

rent identifies the common distribution F̃ℓ of transformed costs on that lane and, conditional

on the identified F̃ℓ, a carrier’s acceptance schedule identifies his rent level.

While a carrier’s acceptance schedule identifies his primitives, we face the empirical chal-

lenge that these schedules are not observed for short-lived relationships.39 To overcome this

38Our argument allows for the case that the full compensation equals the spot rate at multiple levels of
spot rates. Appendix A provides the formal definition of jump points and conditions for their existence.

39On-path terminations of relationships occur due to demotion and auction events, resulting in short-lived
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challenge, we employ a two-step approach. The first step takes advantage of long-lasting

relationships to identify the distribution of transformed costs. Then, taking this cost dis-

tribution as given, the second step pools all relationships on the same lane to identify the

distribution of these carriers’ rents from the pooled acceptance schedule. The intuition for

the second step is as follows: Since the acceptance schedules associated with different levels

of carrier rent jump to zero at different levels of spot rate, these schedules are linearly in-

dependent. Such linear independence implies that the pooled acceptance schedule identifies

the mixture of acceptance schedules, which, in turn, identifies the distribution of carrier rent

by the monotonicty of carriers’ acceptance in their rents.40 The following lemmas formalize

our two-step approach.

Lemma 1. (Identification of the distribution of transformed costs) A carrier’s acceptance

schedule on lane ℓ identifies at least one point on the distribution F̃ℓ of transformed costs,

and the variation in carrier rent across relationships on the same lane identifies F̃ℓ.

Lemma 2. (Identification of the distribution of transformed rents) Suppose that the instru-

mental objects and the distribution F̃ℓ of transformed costs are identified. The distribution

[Gη+p+κ
ℓ ]1:N of the transformed rents of winning carriers is identified.

The final step in identifying carrier primitives is to decompose transformed costs into

search costs and operational costs and pin down the potential causal link between search

costs and spot market thickness. We do so by exploiting a demand shifter for spot volumes

that is independent of unobserved cost factors across lanes. Subtracting the identified search

costs from the distribution of transformed rents yields the distribution [Gη+p
ℓ ]1:N of winning

carriers’ rents.

Lemma 3. (Cost decomposition) If F̃ℓ is identified, then the variation in the demand shifter

zℓ and in the average spot volume Volumespotℓ identifies search costs κℓ = κ(Volumespotℓ ) and

the distribution Fℓ of operational costs, up to a constant.41

5.2 Identifying shipper primitives from the auction

We complete our identification argument with the identification of the joint distribution

of match-specific gains for shippers and carriers in realized relationships. Crucially, we

relationships. For long-lasting relationships, we can identify the carrier’s acceptance tendency conditional
on the relationship surviving to the next period. Appendix F provides details on how we correct for this
selection.

40Kasahara and Shimotsu (2009) show, in general dynamic discrete choice models with Markov states, that
linear independence of response functions is sufficient for identification of finite mixtures. Since we assume
continuum support for the distribution of carrier rent, we present a direct proof of Lemma 2 in Appendix A.

41While search costs are identified only up to a constant, our welfare conclusions rely mainly on how search
costs scale (inversely) with the thickness of the spot market.
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exploit the existence of a strictly monotone mapping br : η + p 7→ ψ − p between carriers’

rents and shippers’ rents in symmetric monotone equilibria. Adopting a strategy similar

to Guerre, Perrigne and Vuong (2000), we pin down the derivative of this mapping from

the first-order condition of carriers’ bidding, albeit in the space of carrier rents rather than

the space of observed bids. Another difference between our approach and theirs is that the

initial condition for our mapping br is derived from the individual rationality constraint of

the shipper (i.e., the auctioneer) rather than that of the carriers (i.e., the bidders). The

reason for this is that long-term contracts in our setting allow the carriers to accept or reject

any requests; carriers therefore always weakly benefit from relationships.

With br, we pin down the distribution of shipper rent from the previously identified

distribution of carrier rent. Conditioning the joint distribution of shipper and carrier rents

on observed contract rates pins down the joint distribution of match-specific gains. The

following lemmas formalize our identification argument.

Lemma 4. (Identification of the distribution of shipper rent) Suppose that a symmetric

monotone equilibrium posits a one-to-one mapping br : η + p 7→ ψ − η from carrier rent

to shipper rent. Furthermore, suppose that the instrumental objects, the cost parameters

(Fℓ, κℓ), and the distribution [Gη+p
ℓ ]1:N of winning carriers’ rents are identified. Then the

mapping br and, thus, the distribution [Gψ−p
ℓ ]1:N of shippers’ rents are identified.

Lemma 5. (Identification of the joint distribution of match-specific gains) Suppose that the

instrumental objects, the cost parameters (Fℓ, κℓ), and the distribution [G
η+p|p
ℓ ]1:N of win-

ning carriers’ rents conditional on contract rates are identified. Then the joint distribution

[Gψ,η
ℓ ]1:N of shippers’ and carriers’ match-specific gains is identified.

6 Estimation

This section outlines our estimation procedure and presents our estimates of model prim-

itives. These estimates suggest that long-term relationships generate large gains to the par-

ticipating parties but exert substantial negative externalities on the spot market. We find

that the total match quality of the median relationship is $1.50/mile, of which $0.85/mile

comes from shipper and carrier match-specific gains and $0.65/mile comes from savings on

search costs for spot loads. Doubling spot market volume would reduce these search costs

by half.

Following the logic of the identification argument outlined in the previous section, we

use the combined relationship and spot data to sequentially recover (i) instrumental objects,

(ii) cost parameters and spot markets’ scale efficiency, and (iii) match-specific gains. For
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ease of interpretation, contract and spot rates, operational and search costs, and match-

specific gains are estimated on a per-mile basis. Confidence intervals for our estimates are

constructed from 50 full-estimation bootstraps, with sampling at the auction level. Appendix

F explains our estimation procedure in greater detail.

6.1 Instrumental objects

Two instrumental objects are key to relationship dynamics: (i) the spot process and (ii)

the shipper’s punishment scheme. Since we do not observe the spot rate each carrier faces

but rather the time-specific mean p̃ℓt and standard deviation σζℓ , we assume that at the time

of decision-making, carrier j faces spot rate p̃ℓt+ζjℓt, with ζjℓt ∼ Normal(0, σζℓ ). We estimate

an AR(1) process for the calendar-based spot rate process and scale it by the frequency of

shipper-carrier interactions in a relationship to obtain the load-based spot process in that

relationship. We similarly scale the daily discount rate of 0.992 to obtain the relationship-

specific, load-based, discount rate δial.

For the shippers’ punishment scheme, we jointly estimate a Probit specification for de-

motion probability,

σ0(Rt−1, p̃ℓt) = Φ(α1 + α2Rt−1 + α3Xiaℓ + α4Rt−1Xiaℓ + α5(p̃ℓt − p̃ℓ0)), (6)

the initial rejection index R0, and the daily decay parameter α on carriers’ past rejections.

Here, Xiaℓ includes the (log) frequency of shipper-carrier interactions and the coefficient

of variation of the shipper’s weekly volume; and (p̃ℓt − p̃ℓ0) captures changes in market

conditions since the start of the relationship.42 Since the rejection index Rt−1 might be

correlated with unobserved variation in shippers’ punishment scheme, we instrument for Rt−1

with an analogously constructed index of past spot rates. Consistent with Harris and Nguyen

(2025), we find that shippers punish carriers’ rejections by increasing demotion probability in

future periods; this punishment scheme is soft but generates meaningful economic incentives.

Appendix E.2 presents our estimates of shippers’ punishment scheme and other instrumental

objects, including the discount factor and number of bidders.

6.2 Cost parameters and spot markets’ scale efficiency

Estimation procedure. We estimate cost parameters under the following parametric

specification. Assume that transformed costs c̃jℓt ∼ Normal(µ̃ciaℓ, σ
c) with auction-specific

42As argued in Harris and Nguyen (2025), the frequency and timing consistency of load offers, as well as
changes in spot market conditions, influence the continuation value of a relationship. Thus, these factors
may affect the harshness of the shipper’s punishment in response to carrier rejections.
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means µ̃ciaℓ and common variance σc. Moreover, assume that the mean µ̃ciaℓ of transformed

costs can be decomposed into search cost κℓ and the mean µciaℓ of operational costs as follows:

µ̃ciaℓ =

search cost κℓ︷ ︸︸ ︷
γ0 + γ1 ln(Volumespotℓ ) + γ2 ln(Volumespotℓ ) ln(Distanceℓ) (7)

+ γ3 ln(Distanceℓ) + γ4Xiaℓ + γ5Tighta + γ6Imbalanceℓ + νcℓ + ϵciaℓ︸ ︷︷ ︸
mean operational cost µciaℓ

.

In the specification of search costs, Volumespotℓ is the average spot volume and Distanceℓ

is the average distance of lane ℓ. That is, we allow search costs to vary with spot market

thickness, with this effect potentially varying with lane distance. In the specification of

operational costs, Tighta is an indicator of whether auction a occurs in a tight market phase,

and Imbalanceℓ captures the likelihood of a carrier finding a backhaul after completing the

forehaul on lane ℓ. The former variable helps control for changes in carriers’ opportunity

costs across market phases; the latter mitigates concerns about spatial equilibrium effects.43

We estimate cost parameters in three steps. First, we estimate transformed costs and

rents by maximizing the likelihood of carriers’ accept/reject decisions in relationships with

at least 30 requests.44 For each of these relationships and each set of parameter values

(ηijℓ+pijℓ+κℓ, µ̃
c
iaℓ, σ

c), we use a fixed-point algorithm to solve for the carrier’s value function

and optimal strategy (Rust, 1994). Second, using the estimates of (µ̃ciaℓ)iaℓ:Tiaℓ≥30
from the

previous step, we estimate equation (7) by two-stage least squares using the predicted trade

flows across states from Caliendo et al. (2018) as the instrument for spot volume. To complete

the cost decomposition, we calibrate γ0 to match the median operational cost to the industry

estimate in Williams and Murray (2020).45 Finally, we use observed relationship and lane

characteristics to extrapolate (µ̃ciaℓ)iaℓ:Tiaℓ≥30
to all lanes. Table 2 presents our estimates of

cost parameters. Figure 4 plots the estimated search costs and mean of operational costs

43In principle, search frictions might vary with market phases (e.g., Vreugdenhil, 2023). Our specification
subsumes such effect under the reduced-form term Tighta. This choice is due to our demand shifter—or
our instrument for spot volume—having only cross-sectional variation and not temporal variation. Another
concern is that patterns of trade might affect the equilibrium movements of trucks, thus potentially corre-
lating with unobserved cost shifters. For example, a thick lane might appear desirable not because search
costs are lower on this lane but because it is connected to other thick lanes. In our setting, including
Imbalanceℓ ≡ ln(Volumespot−ℓ ) − ln(Volumespotℓ ) in equation (7) helps mitigate such spatial-equilibrium con-
cern in a meaningful way because the ability to find backhauls is a key concern for carriers on long trips of
at least 250 miles. Our estimates of cost parameters are robust to the inclusion of this imbalance measure.

44Long-lasting relationships allow us to recover relationship-specific parameters but require correcting for
selection on survival. Appendix F describes how we perform this correction on the likelihood function.

45Using an accounting approach, Williams and Murray (2020) estimate the marginal cost of trucking
service to be $1.55/mile, including fuel costs. Since long-term contracts typically separate payment on fuel
costs as fuel surcharge, and spot rates in our data subtract fuel surcharge, we also subtract fuel surcharge
($0.33/mile) from the accounting estimate. Note that this specific cost decomposition will not affect our
welfare conclusion, which relies mostly on our estimates of the scale efficiency parameters.
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Table 2: Estimates of cost determinants

Parameter Variable Estimate 95% bootstrap CI

γ1 ln(Volumespot) −0.514 (−0.756,−0.293)
γ2 ln(Volumespot)× ln(Distance) 0.068 (−0.186, 0.278)
γ3 ln(Distance) −1.098 (−1.440,−0.794)
γ4,1 Frequency 0.244 (0.132, 0.359)
γ4,2 Inconsistency 0.660 (−0.182, 1.307)
γ5 Tight 0.411 (0.303, 0.573)
γ6 Imbalance −0.244 (−0.393,−0.117)
σc Cost variance 0.8 (0.7, 1.1)

Figure 4: Volume-weighted distribution of search and operational costs
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across all relationships.

Large spot market scale efficiency. The estimates in Table 2 show that increasing

the thickness of the spot market substantially reduces search costs. This supports the idea

hypothesized by Kranton (1996) that the formation of long-term relationships can crowd out

the spot market by making it thinner and less efficient. Our estimate of the scale efficiency

parameter γ1 is negative and economically significant, with no detectable effect of distance

on scale efficiency. Specifically, we estimate that doubling the spot volume would decrease

search costs on a lane by $0.36/mile.

Determinants of operational costs. Table 2 also shows that per-mile operational costs

are higher on shorter lanes and in relationships with higher volumes. Moreover, operational

costs increase by $0.41/mile in periods of sustained high demand and decrease by $0.17/mile

on lanes for which finding a backhaul is twice as easy. These factors contribute to the large

variation in mean operational costs across relationships in Figure 4.
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6.3 Relationships’ match-specific gains

Estimation procedure. Given our cost estimates, we recover match-specific gains non-

parametrically in three steps. First, we estimate the distribution Gη+p(·|X̃iaℓ) of carri-

ers’ rents conditional on an extended set X̃iaℓ of observable characteristics that includes

auction-specific characteristics in Xiaℓ and the following lane-specific characteristics: Rateℓ,

Volumespotℓ , Distanceℓ, Tighta, and Imbalanceℓ.
46 We use an EM algorithm (Train, 2008)

to estimate this conditional distribution as a mixture of conditional Normal distributions.

Second, we estimate the conditional mapping br|X̃iaℓ : η + p 7→ ψ − p from carrier rents to

shipper rents. Analogous to Guerre, Perrigne and Vuong (2000), we pin down the derivative

of br from the first-order conditions of carriers’ bidding in the space of carrier rents. For the

initial condition of each mapping, we take the fifth percentile of the estimated distribution of

carrier rent as the lowest carrier rent riaℓ. The lowest shipper rent ensures that relationships

have nonnegative match quality. That is, we set br(riaℓ) = −riaℓ−κℓ.47 Finally, conditioning

rents on contract rates allows us to recover the joint distribution of match-specific gains.

Large and heterogeneous match-specific gains. We find large and heterogeneous

match quality in realized relationships, with the shipper’s match-specific gain accounting

for a large fraction of total match quality. The left panel of Figure 5 plots the density of the

joint distribution of carriers’ match-specific gains including savings on search costs (η + κ)

and shippers’ match-specific gains (ψ) in realized relationships. Darker colors represent val-

ues of shippers and carriers’ match-specific gains with higher density. We find that for the

median relationship, the shipper’s match-specific gain is $0.78/mile and the carrier’s gain is

$0.68/mile. However, only $0.07/mile of this carrier’s gain from a relationship transaction

is due to the carrier’s intrinsic gain; the rest comes from his savings on search costs.

The right panel of Figure 5 shows quantile plots for the distribution of match quality,

including and excluding savings on search costs. Even when savings on search costs are

excluded, 79% of relationships have positive intrinsic gains. This suggests that intrinsic

relationship benefits play a more important role in driving the dominance of relationships in

the current institution than does the thinness of the current spot market: even if the spot

market could be made so thick as to completely eliminate search costs, four-fifths of current

relationships would still have value. These benefits, however, are very heterogeneous across

relationships, a fact that underscores the importance of auctions in facilitating the formation

46The idea is to use observed lane-specific characteristics, including equilibrium objects such as spot rate
and volume, to control for differences in the underlying demand and supply factors across lanes.

47Since we only exploit individual rationality constraints, our estimates of shipper rents could be considered
lower bounds. An approach that tries to rationalize the fact that shippers do not deviate to the spot market
within the relationship would estimate even larger shipper rents.
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Figure 5: Volume-weighted distribution of match-specific gains and match-quality
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of high-value matches in the truckload setting.

7 Welfare analysis

In this section, we combine our estimates of the model primitives from the previous section

with a market equilibrium framework to answer the following question: Should relationships

play a more or less prominent role in the US truckload freight industry? Our findings suggest

that a marginal—but not global—shift away from relationships would improve social welfare.

7.1 Conceptual framework

Our welfare analyses focus on two frictions in the current market institution: (i) the

contractual frictions within long-term relationships and (ii) the thinness—and therefore

inefficiency—of the spot market.

To assess the role of contractual frictions, we evaluate the welfare implications of replacing

the current fixed-rate contracts with index-priced contracts that are designed to maximize

welfare at the level of individual relationships. These contracts build on the standard idea

in contract theory (e.g. Harris and Raviv, 1979; Shavell, 1979) that, to solve a moral hazard

problem in a principal-agent relationship, the principal should “sell the firm” to the agent.

Specifically, these index-priced contracts transfer all relationship rents to the carrier, peg

payments one-to-one to the spot rate, and award to the carrier that bids the highest fixed
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fee a contract with the following payment schedule:48

pijℓ(p̃ℓt) =


g − b0ijℓ +

“incentive”︷ ︸︸ ︷
ψijℓ + p̃ℓt if carrier j accepts

−b0ijℓ︸ ︷︷ ︸
“screening”

if carrier j rejects.
(8)

While these indexed-price contracts eliminate contractual frictions within relationships, their

widespread adoption would further thin the spot market, thereby reducing its efficiency.

Comparing the market-level performance of these index-priced contracts to that of fixed-

rate contracts helps shed light on whether market inefficiency in the current institution

stems primarily from contractual frictions or primarily from the lack of spot market scale.

More systematically, we assess the key market-level tradeoff—between realizing match-

specific gains within relationships and maintaining spot market efficiency—across a set of

counterfactuals in which we eliminate contractual frictions while varying the split between

relationship and spot transactions. Such counterfactuals not only highlight the fundamental

tradeoff between relationships and the spot market, but are also particularly tractable.49 For

a given level of spot market share in total market volume, we can find the optimal allocation

between relationship and spot transactions by solving a linear programming problem. As

shown in Appendix G, the solution to this constrained first-best problem is implementable

by pairing index-priced contracts with an appropriate tax on relationship transactions. In-

tuitively, index-priced contracts address the externalities of carriers’ decisions on shippers

within relationships, while varying the tax rate mitigates the externalities of relationships

on the spot market.

Comparing the current institution to the constrained first-best curve—which traces the

highest achievable welfare for each level of spot share—enables us to determine whether the

market-level first-best relies more or less on relationships relative to the current institution.

In addition to the market-level first-best, we also zoom in on two other benchmarks: (i)

an index-priced scenario without taxes, as previously mentioned, and (ii) a spot-only sce-

nario, which is equivalent to imposing an infinite tax on relationship transactions. These

benchmarks represent two practically relevant cases: one where practitioners shift toward

48Under this contract, the carrier accepts when cjℓt ≤ (ψijℓ + ηijℓ + p̃ℓt) and remains idle otherwise. This
acceptance rule delivers the relationship-level first-best because: (i) the shipper selects the relationship with
the highest nonnegative match quality; (ii) in a relationship with nonnegative match quality, the carrier
should never reject to service the spot market; and (iii) accepting at cost cjℓt would realize the relationship’s
match quality (ψijℓ + ηijℓ) and save the shipper from paying p̃ℓt to a spot carrier.

49By removing contractual frictions—and thus the need for relational incentives—our counterfactuals
significantly simplify relationship dynamics. Additionally, since these counterfactuals do not rely on relational
incentives, we bypass the need to explicitly model shippers’ rationale for their observed punishment schemes.
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more flexible contracts and another where an Uber-like model with a centralized spot market

dominates trucking.

To ensure a meaningful comparison across these scenarios, we estimate and hold constant

the underlying aggregate demand and capacity factors. To do so, we make the following

assumptions. First, KMA-to-KMA lanes can be grouped into seven lane types.50 Second,

within each lane type, 2016 represents a soft market, and 2018 represents a tight market,

resulting in a total of fourteen lane-year clusters. Third, within each of these clusters,

the underlying demand and capacity are characterized by the tuple (L∗, C∗, (D∗
t )

52
t=1). We

assume that all L∗ relationships are formed at t = 0 and that total carrier capacity remains

constant at L∗ + C∗ throughout the year. Additionally, D∗
t represents an exogenous shock

to spot demand in week t, capturing variation in spot rates not explained by observed

relationship dynamics. Fourth, we assume that loads fulfilled by backup carriers can be

treated as spot loads, based on the observation that, compared to primary carriers, backup

carriers are substantially less likely to accept offers and perform substantially worse on quality

metrics.51 We estimate the tuple (L∗, C∗, (D∗
t )

52
t=1) of underlying demand and capacity using

our model estimates in Section 6 along with observed rates and volumes in relationship and

spot transactions. Appendix G provides a detailed explanation of this estimation process

and the derivation of welfare in both the current and counterfactual scenarios.

7.2 Counterfactual welfare

Index-priced (without taxes). We assess the role of contractual frictions at both the

relationship and market levels by quantifying (i) the effect of index-priced contracts on a

single relationship and (ii) the market-level welfare effects if all relationships move to index-

priced contracts. At the relationship level, we find that current relationships generate an

average surplus of $0.64/mile over spot transactions. While large relative to average spot

and contract rates, this surplus amounts to only 64% of the first-best surplus achieved under

index-priced contracts. Moreover, the share of first-best surplus achieved is significantly

lower in relationships with lower match quality.52

50Since our relationship data covers only a subset of shippers, we cannot reliably estimate aggregate
demand within relationships at the KMA-to-KMA level. Instead, we cluster lanes based on exogenous and
equilibrium characteristics. Figure 14 in Appendix G visualizes the effectiveness of our approach in separating
lanes with different underlying supply and demand factors.

51In Appendix E.1, we show that backup asset-owners have acceptance rate roughly half that of their
primary counterparts. Moreover, their performance on on-time delivery and detention time is quite similar
to that of brokers, who match shippers with different carriers—potentially including spot carriers—on a
per-load basis.

52This selection effect—driven by higher-quality relationships facing a less severe moral hazard problem and
having greater flexibility to use contract rates as an incentive instrument—softens the impact of contractual
frictions on aggregate welfare. In Appendix G, we provide more details on the welfare effects of fixed-rate
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Figure 6: Welfare change relative to the current institution
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At the market level, the chief drawback of index-priced contracts is their tendency to

further thin the spot market and increase search costs for spot loads. We find that the

global adoption of index-priced contracts would increase search costs by $0.09/mile in a soft

market and $0.22/mile in a tight market. These higher search costs affect welfare through

three channels: a direct channel (search costs), and two indirect channels (operational costs

and match-specific gains).

Figure 6 presents welfare changes ($/mile) of the index-priced scenario relative to the

current institution across these channels. For the direct channel, we find that total search

costs incurred remain virtually unchanged. While the cost of each search is higher, fewer

carriers participate in the spot market, meaning that fewer carriers incur these costs. For the

indirect channels, higher search costs increase the effective premium of relationships relative

to the spot market. This in turn leads to (i) the formation of more relationships with negative

intrinsic match quality and (ii) the acceptance of loads within relationships by carriers with

a higher operational cost draw than some carrier operating in the spot market. The first of

these indirect effects dampens the gains from increasing transactions with positive intrinsic

match quality, while the second increases average operational costs. Both indirect effects

tend to offset the gains from resolving contractual frictions by index-priced contracts.

In sum, our findings on the welfare effects of index-priced contracts suggest strong private

incentives to adopt more flexible contracts while cautioning against their potential negative

versus index-priced contracts for individual relationships, examining (i) the impact of match quality, (ii)
the influence of market conditions, and (iii) the distribution of relationship surplus between shippers and
carriers.
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impact on spot market thickness and efficiency.53

Spot-only. Turning from a scenario in which relationships are optimized to one in which

they are eliminated, we find that the spot-only scenario would result in a substantial welfare

loss relative to the current institution (see Figure 6). Specifically, this loss amounts to

$0.36/mile in a soft market and $0.47/mile in a tight market. While the reductions in search

and operational costs are large, they fall well short of compensating for the complete loss of

match-specific gains from relationships. This finding confirms the importance of relationship

benefits in trucking. A global shift to a dominant spot platform is not only unlikely—due

to private incentives to remain in relationships—, but also socially inefficient.

Market-level first-best. Finally, we compare the current institution to the market-level

first-best. The left panel of Figure 7 illustrates the constrained first-best curve for a cluster

of lanes in the soft market phase and maps different institutions along this curve.54 Three

patterns emerge, all of which similarly hold across other clusters of lanes and market phases.55

First and most critically, comparing the fixed-rate and first-best points reveals that the

current institution features a suboptimal spot share; using the tax instrument to marginally

increase the spot share would improve welfare. Second, implementing index-priced contracts

(with no tax) would further decrease the spot share, moving it further away from the first-best

level. This suggests that the incompleteness of current contracts, by limiting relationship

surplus, mitigates the negative externalities relationships exert on the spot market. Third,

while the first-best spot share is higher than that of the current institution, relationships

continue to play a key role in the first-best. Indeed, spot-only is the worst-performing market

institution along the constrained first-best curve. This underscores the indispensable role of

relationships in the trucking industry.

The right panel of Figure 7 shows how far the current institution is from the market-

53Conversations with practitioners suggest that, historically, the lack of access to reliable freight indices
with granular pricing and location data has been a barrier to implementing index-priced contracts. In
recent years, there have been early signs of interest in index-priced contracts, with the introduction of
those that utilize a national truckload index. See, for example, https://www.freightwaves.com/news/
index-linked-contracts-new-way-to-buy-trucking-capacity.

54Technically, the current institution with fixed-rate contracts is not allocatively efficient. However, its
proximity to the constrained first-best curve suggests that most inefficiencies of the current institution stem
from the suboptimal split between relationship and spot transactions.

55The finding that the index-priced scenario results in suboptimal spot share and that the spot-only
scenario is the worst-performing institution holds across all 14 clusters. The finding that the fixed-rate
scenario falls between the index-priced scenario and the market-level first-best—thus outperforming the
index-priced scenario in market-level welfare—holds in 12 out of 14 clusters. Another general pattern is
that the portion of the constrained first-best curve between index-priced and the market-level first-best is
relatively flat, suggesting that achieving the first-best would require a large tax while delivering a relatively
small welfare gain. Across our 14 clusters, the first-best tax ranges from $0.38/mile to $0.54/mile.
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Figure 7: Comparison to market-level first-best welfare
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Note: The color bar on the right panel shows the fraction of the market-level first-best surplus that is
achieved by the current institution. For meaningful comparisons across clusters of lanes and market
phases, we normalize market-level surplus by the market-level welfare achieved under the spot-only
scenario, which is universally worst for social welfare across all clusters of lanes and market phases.

level first-best across all clusters of lanes and market phases. Each point shows the current

spot share against the first-best spot share, with lighter colors indicating that the current

institution realizes a larger share of the market-level first-best surplus. We find that the

current institution realizes 88% of the market-level first-best surplus in a soft market and

95% in a tight market. This difference is due to the current institution approximating

the first-best spot share better in a tight market, when pressure from the spot market is

high. That is, the incompleteness of fixed-rate contracts acts as a partial corrective tax on

relationship transactions, a mechanism that works particularly well in high-demand periods.

7.3 Discussion

Reflecting on our empirical framework and on the results presented above, we offer four

remarks. The first two remarks are conceptual and provide additional nuance to the interpre-

tation of our empirical framework. The third and fourth remarks are empirical, highlighting

additional conclusions that can be drawn from our estimated framework. We expound upon

these additional empirical conclusions in Appendix E.3.

First, while we study two-way crowding-out effects between relationships and the spot

market as hypothesized by Kranton (1996), we emphasize a slightly different problem. In
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Kranton (1996), such crowding-out effects can lead to multiple equilibria, potentially result-

ing in either too much or too little relationship activity—a coordination failure in equilibrium

selection. In contrast, our counterfactual framework emphasizes a cooperation problem. We

consider a social planner who uses external instruments, such as taxes, to alter the equilib-

rium balance between relationship and spot transactions.56

Second, while we refer to the spot market scale (in)efficiencies as “search costs,” we

want to emphasize that we allow for a much broader interpretation of the estimated scale

efficiencies. Indeed, κ(Volumespotℓ ) can be thought of as a reduced form relationship capturing

any number of mechanisms by which spot market participants may benefit from greater

market thickness. To name just a few possible mechanisms, a thicker market may facilitate

faster matching or increase the number of draws from the match-quality distribution, thereby

increasing the expected maximum match-quality drawn.57 We are agnostic as to which of

these microfoundations gives rise to our estimated scale efficiencies.

Third, while this section focuses on comparisons of aggregate welfare across institutions,

this aggregation masks significant distributional effects. Increasing spot share improves total

welfare, and its biggest winners are spot carriers, typically small asset owners, who benefit

from increased demand for spot loads and lower search costs. The biggest losers, on the

other hand, are shippers who prefer relationships, as they both forgo match-specific gains

and have reduced bargaining power in contract formation because carriers enjoy improved

outside options.

Finally, while our counterfactual framework holds the extensive margin fixed to focus on

the balance between relationships and the spot market, the direction of price effects enables

us to determine the potential welfare gains with elastic demand for trucking services. We

estimate that a higher spot share lowers equilibrium spot rates due to reduced search costs

and improved allocative cost efficiency. This suggests that a higher spot share would increase

overall trucking volume were demand to be elastic. Appendix E.3 provides a more detailed

discussion of these price and distributional effects, focusing on the comparison with the

56Our counterfactual approach—benchmarking current welfare against the constrained first-best welfare
frontier—readily generalizes to other markets that are characterized by relationship gains and spot market
scale efficiencies. Constructing this frontier involves two steps: (i) deriving the first-best arrangements within
relationships, and (ii) solving for the relationship tax that implements each level of spot market share. By
tracing the optimal allocation at each relationship-spot split, this approach sidesteps equilibrium selection
issues that arise from the endogenous link between spot market thickness and efficiency. As in our setting,
comparing the current institution to this frontier reveals the extent of frictions in existing relationships and
whether relationships should play a more or less prominent role in the overall market.

57In addition to improving expected match quality conditional on the average quality of spot shippers/-
carriers, a similar effect may arise as a result of positive selection. For example, if—as seems likely—the
highest quality shippers/carriers are more likely to be in relationships, anything that decreases relationship
premiums (e.g., a decrease in search costs) would likely attract to the spot market participants whose quality
exceeds the current average spot-market quality.
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index-priced and spot-only scenarios.

8 Conclusion

This paper studies the market-level tradeoff between long-term relationships and the

spot market, asking whether the trucking industry—in which long-term relationships are

currently dominant—would benefit from a shift toward more spot transactions. To answer

this question, we develop an empirical framework to quantify the intrinsic gains from rela-

tionships and their externalities on the spot market. This framework captures the critical

tension between relationships and spot, similar to the two-way crowding-out effects hypoth-

esized by Kranton (1996). On the one hand, the current relationships feature contractual

frictions, thus allowing spot temptation to crowd out relationships. On the other hand, spot

markets feature frictions that are worsened the more transactions occur within relationships

rather than in the spot market.

Using this framework, together with detailed data on the US for-hire truckload freight

industry, we quantify these forces and find that relationships exert a strong negative scale

efficiency externality on the spot market. Locally, this externality dominates, so a marginal

shift toward spot transactions would increase social welfare. However, we also find that

relationships capitalize on large intrinsic gains. Thus, a global shift toward spot in which

all relationships were abandoned in favor of spot transactions would result in large welfare

losses.

Our findings also highlight the potential benefits of technological advances—such as al-

gorithmic matching and pricing—that improve spot market efficiency. While these advances

would clearly deliver direct benefits to spot market participants, they would also have the

indirect effect of shifting the equilibrium split away from relationships and toward spot trans-

actions. Ex ante, the welfare effects of this shift are ambiguous, since relationship gains may

be lost, but spot market efficiency may be improved. In the case of for-hire truckload freight,

however, our results indicate that this is a shift toward the market-level first-best. In other

words, these indirect effects would amplify the direct benefits of technological advances in

the spot market for truckload freight.
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A Identification proof

Definition 3. (Jump points) Fix search cost κ and distribution F of operational costs. For

carrier rent η + p and rejection state Rt−1, define the jump point as the lowest spot rate

above which the full compensation schedule is always lower than spot rate,

p∗(Rt−1|η + p) = inf{p̂ : p̄(Rt−1, p̃t|η + p) < p̃t,∀p̃t > p̂}.

These jump points are identified from the carrier’s acceptance schedule. Crucially, they

are the levels of spot rate at which the carrier is indifferent between accept and spot. Two

implications follow. First, the acceptance probability observed at the jump points proxies the

carrier’s decision to choose spot over idle were accept not to be an option; this hypothetical

decision reveals information about the costs of servicing spot loads (Lemma 1). Second,

the existence and ordering of jump points in carrier rent ensure linear independence of the

acceptance schedules of carriers with different rents. This property is key to identifying the

mixture of carrier rent pooling relationships of all duration (Lemma 2).

Lemma 6. (Order of jump points) Fix search cost κℓ, cost distribution Fℓ, and rejection

index Rt−1. Suppose that Assumptions 2 and 3 hold. Then the jump points are well-defined

and p∗(Rt−1|η + p) > p∗(Rt−1|η′ + p′) for every η + p > η′ + p′ ≥ 0.

Proof. To show that jump points are well-defined, we first show there exist p̂low and p̂high

such that (i) p̄(Rt−1, p̂low) ≥ p̂low and (ii) p̄(Rt−1, p̃t) < p̃t for all p̃t > p̂high. The existence

of p̂low follows from Assumption 3(iii) that p̄(Rt−1, p̃t) is bounded below. To show (ii), we

show that p̄(Rt−1, p̃t) is bounded above. Note that being in a relationship gives the carrier

an additional option to accept a load and get a payoff of η+p+κℓ− c̃ℓt, while not being in a

relationship only gives the carrier the option to accept a spot load, which yields p̃ℓt− c̃ℓt, or to
remain idle and get zero. Thus, the dynamic compensation of the carrier for an acceptance

is bounded above by η + p+ κℓ. It follows that p̄(Rt−1, p̃ℓt) ≤ η+p+κ
1−δ .

Suppose, for the sake of contradiction, that p∗(Rt−1|η + p) ≤ p∗(Rt−1|η′ + p′). Then, at

p̃t = p∗(Rt−1|η′ + p′), we have p̄(Rt−1, p̃t|η′ + p′) = p̃t ≥ p̄(Rt−1, p̃t|η + p), where the last

inequality follows from the definition of p∗. However, under Assumption 3(i) that the full

compensation in strictly increasing in carrier rent, p̄(Rt−1, p̃t|η′+p′) < p̄(Rt−1, p̃t|η+p). This
yields a contradiction.

Proof of Lemma 1. By Lemma 6, that η+p ̸= η′+p′ gives us at least two distinct jump points.

Note that each jump point p∗ represents a point on the distribution F̃ ∼ Normal(µ̃c, σc) of

transformed costs, where F̃ (p∗) is the observed acceptance probability at the jump point.
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Thus, two distinct jump points give us a system of linear equations

p∗(Rt−1|η + p)− µ̃c

σc
= Φ−1 (Pr(dt = accept|Rt−1, p̃t = p∗(Rt−1|η + p); η + p))

p∗(R′
t−1|η′ + p′)− µ̃c

σc
= Φ−1

(
Pr(dt = accept|R′

t−1, p̃t = p∗(R′
t−1|η′ + p′); η′ + p′)

)
that exactly identify (µ̃c, σc).

Proof of Lemma 2. Without loss of generality, we provide the proof for κ = 0. Fix a rejection

index Rt−1. We exploit the following equality

Pr(dt = accept, Rt−1, p̃t) =

∫
Pr(dt = accept, Rt−1, p̃t|r = η + p)d[Gη+p]1:N(r),

where the joint distribution of carriers’ acceptance, rejection state, and spot rate, both

unconditional and conditional on the level of carrier rent, are either directly observed or

identified. Furthermore, the acceptance probability conditional on carrier rent satisfies a key

property that beyond its jump point, acceptance probability equals zero,

Pr(dt = accept, Rt−1, p̃t|r = η + p) = 0, for all p̃t > p∗(Rt−1|η + p).

Our task is to identify the mixture [Gη+p]1:N .

Take any two distributions [Gη+p]1:N and [Ĝη+p]1:N with absolutely continuous densities

[gη+p]1:N and [ĝη+p]1:N that are not everywhere the same. Let r̄ = inf{r′ : [gη+p]1:N(r) =

[ĝη+p]1:N(r), ∀r > r′} and suppose that limr↑r̄[g
η+p]1:N(r) > limr↑r̄[ĝ

η+p]1:N(r). The continuity

of [gη+p]1:N and [ĝη+p]1:N further implies that for some ϵ > 0, [gη+p]1:N(r̄) > [ĝη+p]1:N(r̄) for

all r ∈ [r̄ − ϵ, r̄]. It follows from Lemma 6 that∫ ∞

p∗(Rt−1|η+p=r̄−ϵ)
Pr(dt = accept, Rt−1, p̃t > p∗(Rt−1|η + p = r̄ − ϵ)|η + p = r)d[Gη+p]1:N (r)

>

∫ ∞

p∗(Rt−1|η+p=r̄−ϵ)
Pr(dt = accept, Rt−1, p̃t > p∗(Rt−1|η + p = r̄ − ϵ)|η + p = r)d[Ĝη+p]1:N (r).

That is, two different distributions generate different acceptance probability on some range

of spot rates, completing the proof that [Gη+p]1:N is nonparametrically identified.

Proof of Lemma 4. In a symmetric monotone equilibrium with an effective bidding function

b and a rent function r : θ 7→ r = θ − b(θ), there exists a unique monotone mapping

br : r 7→ b defined by br(r) = b(r−1(r)). Thus, the first-order condition for the optimal
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bidding of carrier j with type θ ≥ θ can be written in his equilibrium rent r = r(θ) ≥ r,

(N − 1)
gη+p(r)

Gη+p(r)
=

∂
∂r
V (R0, p̃0|r)

V (R0, p̃0|r)− EF,P [V (p̃1)|p̃0]
b′
r(r). (9)

Notice that the carrier’s expected payoff as a function of carrier’s rent r is identified from

the punishment scheme σ0, cost distribution F and search cost κ. To pin down b′
r from

equation (9), it remains to show that Gη+p is identified on [r,∞).

For any rent level r > r, the distribution of winning carriers’ rents satisfies

[Gη+p]1:N(r) =
[Gη+p(r)]N − [Gη+p(r)]N

1− [Gη+p(r)]N
. (10)

Note that Gη+p(r) is identified from the distribution of the number of effective bidders, which

is Binomial(N, 1−Gη+p(r)). It follows that Gη+p is identified on [r,∞] from the distribution

of winning carriers’ rents in equation (10).

For the initial condition of br, we exploit the shipper’s individual rationality constraint,

U(R0, p̃0|b(r), r) = EP [U(p̃1)|p̃0]. (11)

Note that r is identified as the lowest point in the support of Gη+p
r , and the RHS of equation

(11) is identified from the spot process. Thus, equation (11), with the LHS being strictly

increasing in the shipper’s rent, pins down br(r).
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Supplemental Appendix

B Other proofs

B.1 Monotonicity in rents

Assumption 4. There exists b ∈ R such that for all b ≥ b, U(R0, p̃0|r, b) ≥ U(R0, p̃0) for

all r ≥ 0 and U(R0, p̃0|r, b) is increasing in r ≥ 0 and b ≥ b.

The intuition for this assumption is that if the shipper’s rent is sufficiently high, then

holding her rent fixed, the shipper benefits from the carrier having a higher rent and thus

accepting more frequently. While intuitive, this statement relies on the specifics of how the

carrier’s rent affects his path of play and how that path of play is correlated with the realized

path of spot rates.

Figure 8 confirms that under our estimates of the spot process and shippers’ incentive

scheme, substantive assumptions on carriers’ full compensation and shippers’ expected pay-

offs are satisfied. The left panel shows that the carrier’s full compensation is increasing

in his rent (Assumption 3(i)). The right panel shows that the shipper’s expected payoff is

increasing in both her rent and the carrier’s rent (Assumption 4).

B.2 Existence of a symmetric monotone equilibrium

Lemma 7. Under Assumptions 2-4, a symmetric monotone equilibrium exists.

Proof. We prove the existence of symmetric monotone equilibria in two steps. First, we

construct a monotone equilibrium in an auxiliary game in which only match quality matters.

Second, we derive a symmetric monotone equilibrium in the original game from the monotone

equilibrium of the auxiliary game.

Step 1: A monotone equilibrium of an auxiliary game.

Consider a bidding game where each carrier j has private information about his match-

quality with the shipper, θij. Each carrier submits a bid bij and the shipper chooses the

carrier with the highest bid subject to reserve price b. Here, b is the lowest level of shipper’s

rent that satisfies Assumption 4. The carrier that wins this auction gets expected payoff

V (R0, p̃0|θij − bij).

In this game, there exists a strictly increasing bidding function b : θij 7→ bij such that

b(θij) = argmax
b

[Gθ(b−1(b))]N−1(V (R0, p̃0|θij − b)− EF,P [V (p̃1)|p̃0]).
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Figure 8: Monotonicity of carriers’ full compensation and shippers’ expected payoffs in rents
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Note that a relationship strictly benefits the carrier if and only if the carrier’s rent is strictly

positive. Thus, in this equilibrium, the lowest match quality of a winning carrier gives zero

rent to that carrier, b(θ) = θ. That is, individual rationality binds for the carrier with the

lowest match quality. Moreover, a carrier with match quality θ > θ has a strictly positive

rent, since he would otherwise strictly benefit from deviating to a lower bid. Denote by

r : θij 7→ θij −b(θij) the function that maps the carrier’s match quality to his rent. We have

r(θ) = 0 and r′(θ) > 0. Moreover, for all θ ≥ θ, we have r(θ) > 0 and b′(θ) + r′(θ) = 1. We

want to show that r is strictly increasing.

The first-order condition of the carrier’s bidding satisfies that for all θ > θ,

(N − 1)
gθ(θ)

Gθ(θ)
=

∂
∂r
V (R0, p̃0|r = r(θ))

V (R0, p̃0|r = r(θ))− EF,P [V (p̃1)|p̃0]
b′(θ).

Suppose that for some θ ≥ θ, r′(θ) ≤ 0 and consider two cases: (i) there exists a strict

interval on which r′(θ) = 0, and (ii) there is no such interval. In case (i), there exist θ1 < θ2

such that r(θ1) = r(θ2) and r′(θ1) = r′(θ2). In case (ii), there exist θ1 < θ2 such that

r(θ1) = r(θ2) and r′(θ1) > 0 > r′(θ2). In either case, we have 0 < b′(θ1) ≤ b′(θ2). Then
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under Assumption 2(iii) that Gθ has strictly decreasing hazard rate, we have

∂
∂rV (R0, p̃0|r = r(θ1))

V (R0, p̃0|r = r(θ1))−EF,P [V (p̃1)|p̃0]
=
gθ(θ1)

Gθ(θ1)
[b′(θ1)]

−1

>
gθ(θ2)

Gθ(θ2)
[b′(θ2)]

−1 =
∂
∂rV (R0, p̃0|r = r(θ2))

V (R0, p̃0|r = r(θ2))−EF,P [V (p̃1)|p̃0]
.

This is a contradiction, completing the proof that r(θ) is strictly increasing in θ.

Step 2: A symmetric monotone equilibrium of the original game.

We now map the monotone equilibrium of the auxiliary game to a symmetric monotone

equilibrium of the original bidding game. Note that for a carrier j, if the shipper chooses

the carrier with the highest effective bid (or proposed shipper’s rent) and other carriers bid

according to b, then carrier j has no incentive to deviate from bidding according to b. It

remains to show the shipper’s selection rule in the auxiliary game is optimal in the original

bidding game.

Under Assumption 4 and by the choice of b in the auxiliary game, we have for all θ ≥ θ,

U(R0, p̃0|b(θ), r(θ)) ≥ EP [U(p̃1)|p̃0]

and U(R0, p̃0|b(θ), r(θ)) is increasing in θ. This means that by choosing the carrier j with

the highest effective bid satisfying bij ≥ b(θ), the shipper maximizes her expected payoff

from the relationship and never receives an expected payoff lower than her outside option of

always going to the spot market.

C Data construction

This section describes the construction of key variables for the analysis of long-term

relationships: per-mile contract rates, primary status, demotion events, and auction events.

In addition to the observed routing guide for each load offer, we exploit a complementary

data set that records the timestamps of shippers’ making changes to rankings or rates in the

TMS. Because demotions and auction events involve these kinds of changes, these timestamps

provide candidates for the timing of demotion and auction events. We refer to the period

between two consecutive timestamps of a shipper on a lane as a “date-range.”

C.1 Contract rates

Shippers seeking long-term relationships define lanes at geographical levels finer than

KMA-to-KMA, sometimes as fine as warehouse-to-warehouse. Shippers can also bundle
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Table 3: Example load offers: Shipper Z, lane City X - City Y (on June 1, 2018)

Type Order Carrier Rate Decision

Primary carrier 1 A 1.60 Reject

Backup carriers

{ 2 B 1.44 Reject
3 C 1.72 Accept
4 D 1.89

Note: The first request was sent to carrier A at the contracted rate of
$1.60/mile; since A rejected, a request was sent to B at the contracted rate
of $1.44/mile; since B also rejected, a request was sent to C at $1.72/mile;
since C accepted, no request was sent to D.

multiple origin-destination pairs in close proximity into a single “lane”, using the same

contract. Note that, in this latter case, the distance of the haul may vary from load to load.

We use this to distinguish between two different pricing modes: linehaul pricing (where the

payment is the same irrespective of distance) versus per-mile pricing. To match the unit

of spot rates, we construct per-mile contract rates for specific trips and take the median of

these rates within a date-range as the fixed contract rate.

C.2 Primary status

From the fact that primary carriers are generally the first to receive shippers’ requests,

we are able to identify primary carriers by observing which carriers tend to receive load offers

first. Exceptions may arise, typically either due to pre-specified capacity constraints agreed

upon by the shipper and the carrier or due to multiple primary carriers sharing primary

status on the same lane. In such instances, we assign primary status to the carrier with the

most first requests within a date-range.

C.3 Auction and demotion events

Our data do not include explicit indicators of auction and demotion events. However, we

can infer these events from observed changes in contract rates (for auction events) and the

orderings of requests (for demotion events).

We treat the beginning of the current date-range as an auction event if we observe changes

in the contract rates of the same carriers (either linehaul or per-mile) from what they were

in the previous date-range. A secondary indicator of an auction event would be a completely

new carrier replacing the previous primary carrier.58

58There is a tradeoff in using this indicator. On the one hand, not using this indicator risks missing some
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Figure 9: Number of identified auction and demotion events
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To identify demotion events, we identify instances in which the current primary carrier

is replaced by another carrier within the same contract period (that is, between two auction

events). Measurement errors in our constructed indicator of demotion events can come from

measurement errors in our constructed primary status or in our indicators of auction events.

Figure 9 plots the number of identified auction and demotion events in each month-year

in our sample period. Auctions appear to occur at random over time. There are spikes in the

number of identified auction events, reflecting the fact that shippers tend to hold auctions on

multiple lanes simultaneously. Identified demotion events are relatively evenly distributed

over time and do not seem to correlate with identified auction events. This suggests that

our data construction does a reasonably good job at separating the two types of events.

C.4 Carrier types

The trucking industry uses two different sets of codes as public identifiers for carriers: the

Standard Carrier Alpha Code (SCAC), maintained by the National Motor Freight Traffic

Association (NMFTA), and US DOT registration codes issued by the US Department of

Transportation. We map the SCAC variable in our data set to US DOT codes using a

conversion table from the NMFTA (NMFTA, 2021). We then map US DOT codes to carriers’

registration at the Department of Transportation for the year 2020 (FMCSA, 2021). This

method matches 90% of carriers in our microdata. We divide the matched carriers into

auction events because carriers sometimes reuse their bids. On the other hand, using this indicator risks
assigning an auction event to what is actually a demotion event, since some backup carriers may not appear
in the routing guide. We judge that the second risk is less severe and therefore use both indicators to detect
auction events.
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Table 4: Summary statistics of the merged relationship and spot data

Count Variable Mean Standard deviation (SD)

Relationships 12,586 Relationship duration (requests) 52 124
Frequency (requests/month) 11 18
Likelihood of eventual demotion 25%

Auctions 10,262 Auction period (days) 381 250
Likelihood of ≥ 1 demotion 26%

Temporal Spatial

KMA-KMA lanes 5,679 Contract rate ($/mile) 1.83 0.12 0.50
Spot rate ($/mile) 1.87 0.23 0.50
Spot volume (load posts/month) 1142 472 1136

two types: (i) asset-owner carriers, defined as carriers with some asset ownership, and (ii)

brokers, defined as carriers without any asset ownership. In Appendix E.1, we show that

relationship performance varies substantially across these two groups of carriers.

Our main analysis uses a merged relationship and spot data set that is limited to asset-

owner carriers. Table 4 provides summary statistics for this data set.

D Data representativeness

In our TMS data, we observe all of the interactions between 51 shippers and their con-

tracted carriers. While this data contains 1.2 million transacted loads, this represents only

about 0.1% of all US truckload contract transactions by value.59

To assess the representativeness of our sample, Figure 10 compares the distribution of

fleet sizes of carriers in our data set with the distribution of fleet sizes of all registered

carriers. While this comparison shows that the carriers appearing in the CHR data set tend

to be large relative to the population of all carriers, the CHR data set is not necessarily

unrepresentative of the population of carriers in long-term relationships. Large carriers are

more likely to transact through long-term relationships, while small carriers are more likely

to transact in the spot market.60 Moreover, Figure 11 shows that the rates of rejection by

primary carriers over time are quite similar across carriers of different sizes. This analysis

of heterogeneity within our data set suggests that any overrepresentation of large carriers in

our sample is unlikely to bias our results since—at least in the aggregate—carrier behavior

within relationships is relatively uniform across the distribution of carrier sizes.

59This fraction is calculated based on the estimated annual trucking contract market in the U.S. at $288
billion (Holm, 2020a).

60See, for example, Holm (2020a): “Larger carriers tend to have more contract exposure, while smaller
fleets generally have less....”
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Figure 10: Carrier size distributions: CHR data set versus all registered carriers
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Note: This histogram compares the distribution of carriers’ fleet size (number of trucks) in
our CHR data set with that of the FMCSA Census of Carriers. Note that the x-axis has
a log scale and that the y-axis shows the truck-weighted density. The latter means that
rather than representing the fleet size distribution of fleets, these histograms represent the
fleet size distribution of trucks. That is, if one were to draw a truck at random and observe
the size of the fleet to which the truck belonged, the distribution of these fleet sizes would
correspond to our histograms.

Figure 11: Monthly rejection rates by carrier size
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E Other empirical results

E.1 Sources of gains from long-term relationships

This section presents suggestive evidence on the match-specific gains from relationships

(ψ, η) that play a central role in our welfare analysis. The primary purpose of presenting

this evidence is to elucidate the sources of match-specific gains in the truckload setting. In

addition, this evidence serves to support several of our modeling choices. In particular, it

supports (i) our decision to treat match-specific gains as fixed throughout the relationship,

(ii) our focus on acceptance—rather than other elements of carrier performance—as the rele-

vant margin for moral hazard within relationships, and (iii) our decision to treat transactions

with backup carriers as spot rather than relationship transactions.

To accomplish this, we compare carrier performance across different groups, analyzing

differences between primary and backup carriers and between asset-owners and brokers. In

addition to acceptance, which we emphasize as a key carrier decision margin throughout the

paper, we exploit two additional measures of carrier performance: on-time delivery, which

is a dimension of carrier reliability, and carrier detention time, which reflects the degree of

shipper-carrier coordination.61 To make these comparisons, we estimate regressions of the

following form:

Performanceijℓt =
∑
c

αc1{carrier j’s type is c}+ αspot(p̃ℓt − pijℓ) + controls + ϵijℓt.

Here, Performanceijℓt is one of our three performance measures (acceptance, on-time delivery,

or detention time), and carrier’s type is given by the interaction of asset ownership (asset-

owner or broker) and relationship status (primary or backup). For each performance measure,

we run both an (OLS) specification and a (FE) specification with shipper-carrier-lane fixed

effects. Backup carriers are the excluded group in these (FE) specifications. We present the

estimated coefficients α in Table 5 and discuss the interpretation of these coefficients below.

Sources of match-specific gains. We begin by comparing the OLS estimates of perfor-

mance for primary asset-owners versus primary brokers. The idea behind this exercise is

that, since brokers subcontract each load to an asset-based carrier through one-off transac-

tions, transactions conducted via brokers serve as a useful proxy for spot transactions. We

find that while brokers are about 10.1pp more likely to accept loads, asset-based carriers are

61Detention time refers to the duration that a driver is delayed at a shipper or receiver facility beyond
the standard loading and unloading window. Such delays can result from inadequate dock space, delays in
processing paperwork, or a lack of communication between the shipper and carrier. Detention time imposes
significant costs on carriers, who are not typically compensated for detention time.
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Table 5: Comparison of different groups of carriers across three performance measures

Accept (0/1) On-time (0/1) Detention time (hours)
(OLS) (FE) (OLS) (FE) (OLS) (FE)

Asset owners
Primary 0.732 0.143 0.719 0.0114 1.514 -0.00617

(0.00132) (0.00109) (0.00201) (0.00244) (0.0120) (0.0152)
Backup 0.352 0.657 1.703

(0.00138) (0.00237) (0.0140)

Brokers
Primary 0.833 0.235 0.611 -0.00402 2.035 -0.0637

(0.00144) (0.00146) (0.00219) (0.00293) (0.0130) (0.0184)
Backup 0.375 0.613 2.105

(0.00147) (0.00261) (0.0155)

spot premium -0.185 -0.178 0.0288 -0.0230 -0.253 0.0149
(0.000603) (0.000825) (0.00118) (0.00185) (0.00701) (0.0116)

N 2320132 2313178 874916 850760 847218 840656

Note: (OLS): controls include the frequency and inconsistency of load timing and year dummies. (FE):
in addition to controls in the (OLS) specification, we also control for shipper-carrier-lane fixed effects.
The coefficient estimates for primary capture the difference between being primary versus backup for the
respective type of carrier (asset owner or broker). On-time delivery and detention time are only measured
for accepted shipments.

10.8pp more likely to deliver loads on time and incur an average of 31 minutes less deten-

tion. The latter two observations support the existence of intrinsic gains in shipper-carrier

relationships: shippers and asset-owner carriers that interact repeatedly have better service

quality and shipper-carrier coordination.

Mechanisms underlying relationship gains. Better performance in relationships may

arise through two channels: (i) a selection channel, where shippers and carriers anticipat-

ing repeated interactions invest more in finding high-quality matches, and (ii) an incentive

channel, where the repeated nature of interactions itself fosters better performance. To dis-

entangle these mechanisms, we compare the performance of primary versus backup carriers

using the (OLS) specification—which captures both channels—and the (FE) specification—

which isolates the incentive channel. For this exercise, we focus on asset owners.62

The OLS estimates show that primary carriers outperform their backup counterparts

across all three performance measures: they have a 38pp higher acceptance rate, a 6.2pp

higher likelihood of on-time delivery, and incur an average of 11 fewer minutes in deten-

62Primary and backup brokers exhibit very similar performance in both on-time delivery and detention
time across the OLS and fixed effects (FE) specifications.
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tion. However, when we include shipper-carrier-lane fixed effects, the differences in on-time

delivery and detention time largely disappear. In contrast, about half of the difference in

acceptance rates remains, with primary carriers still exhibiting a 14.3pp premium. This resid-

ual premium partly reflects carriers’ responses to shippers’ punishment schemes and partly

reflects a coordination effect—primary carriers anticipate higher volume from contracted

shippers and realign their networks accordingly to better accommodate these requests. We

conclude that quality and coordination benefits—reflected in on-time delivery and detention

time—are primarily driven by selection effects. Our model captures such benefits through

match-specific gains ψ and η, which are held fixed throughout the relationship, with selection

on these gains occurring at the auction stage.

Low acceptance as the moral hazard concern. For further evidence that acceptance

is the key strategic decision margin for carriers, we examine how each performance measure

responds to spot premiums. This responsiveness matters for two reasons: first, the spot pre-

mium shifts the carrier’s outside option and thus the temptation to renege on relationships;

and second, the spot premium is an equilibrium object shaped by market-level interactions

between relationships and the spot market. We find that a one dollar increase in the spot

rate relative to the contract rate results in an 18.5pp decrease in acceptance rate but no

economically significant change in on-time delivery or detention time.

Backup similar to spot. Finally, we compare the performance of backup asset-owners

with that of backup brokers, based on the idea that the latter can serve as a proxy for spot

transactions. We find that both groups exhibit similarly low acceptance rates—about half

that of their primary counterparts. In terms of quality measures such as on-time delivery

and detention time, backup asset-owners perform at an intermediate level, roughly halfway

between primary asset-owners and brokers. This evidence underpins our treatment of backup

transactions as analogous to spot transactions in the welfare analysis.

Another potential concern with this treatment for welfare analysis is that backup carriers

might not face the same search costs for backup loads as spot carriers do for spot loads.

However, this concern is alleviated by the fact that each backup carrier has a low probability

of receiving and ultimately accepting a load offer; the fact that backup loads account for

one-fifth of total routing-guide volume is largely due to the long tail of this routing guide.

E.2 Shipper’s punishment scheme

Table 6 presents our estimates of shippers’ punishment scheme. The coefficient of the

rejection index Rt−1 is positive and significant. To interpret the magnitude of this coefficient,
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Table 6: Estimates of shippers’ punishment scheme

(GMM) (IV Probit)

Demotion probability Estimate 95% CI Estimate 95% CI

Rt−1 0.0158 (0.0058, 0.0662) 0.616 (0.319, 1.853)

Rt−1 × Frequency 0.0227 (0.0128, 0.0687) 0.584 (0.320, 1.610)

Rt−1 × Inconsistency −0.0220 (−0.0939, 0.0794) 0.468 (−0.240, 2.045)

Frequency −0.0207 (−0.0306,−0.0131) −0.650 (−0.864,−0.464)

Inconsistency 0.0764 (0.0338, 0.1089) 0.171 (−0.663, 0.528)

Spot premium −0.00551 (−0.0081,−0.0037) −0.156 (−0.232,−0.111)

Note: The common decay parameter α and initial rejection index R0 are estimated using GMM;

α̂ = 0.985 (95% CI =(0.956, 0.995)); R̂0 = 0.8 (95% CI = (0.0, 1.0)). Frequency is the log of

average monthly volume; Inconsistency is the average coefficient of variation of weekly volume

within a month. The confidence intervals are constructed from 50 full-estimation bootstraps, with

sampling at the auction level. N = 572274 observations for both specifications.

we simulate two sets of relationships, one with an initial rejection and one with an initial

acceptance. We find that an initial rejection (as compared to an initial acceptance) reduces

the expected number of requests the carrier would receive by 3%. This suggests that the

shipper’s punishment scheme is soft but nevertheless generates meaningful incentives.

Moreover, we find that when the current spot premium is high or when the shipper has

large volume on a lane (i.e., when the relationship is more valuable to the shipper), demotion

probability is lower. Finally, the daily decay parameter α on the carrier’s past rejections is

close to one, suggesting that each rejection by the carrier affects the continuation probability

of his relationship in many future periods. These findings on shippers’ punishment scheme

are consistent with findings in our companion paper Harris and Nguyen (2025).

E.3 Other welfare effects

In this section, we examine the heterogeneous welfare effects of different market in-

stitutions on various types of shippers and carriers. First, we analyze how the current

institution—characterized by fixed-rate contracts and relational incentives—allocates rela-

tionship surplus between shippers and carriers in relationships of varying match quality.

Second, we compare welfare changes for shippers and carriers, both within and outside of

relationships, under two counterfactual scenarios: index-priced and spot-only, relative to the

current fixed-rate scenario.
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Figure 12: Volume-weighted expected surplus from long-term relationships
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E.3.1 Relationship-level welfare effects: fixed-rate contracts

Figure 12 plots the volume-weighted expected surplus from current relationships (blue

line) relative to spot transactions, showing how this surplus is split between shippers (red

area) and carriers (blue area), alongside the relationship-level first-best surplus (green line).

We find that the surplus of individual relationships is split roughly equally between the

shipper and the carrier—a pattern that holds in both soft and tight markets.

The performance of current relationships relative to the relationship-level first-best bench-

mark is also broadly similar across soft and tight markets. However, there is substantial vari-

ation across relationships of different match quality. Specifically, a relationship at the 25th

percentile of match quality captures only 45% of its potential relationship surplus, compared

to 68% for a relationship at the 75th percentile. We draw two key conclusions from these

findings. First, elevated rejection rates during tight markets are, at least in part, a reflection

of higher (opportunity) costs faced by carriers, rather than purely indicative of relationship

breakdowns. Second, under current contracts, the spot market disproportionately crowds

out low-value relationships.

E.3.2 Market-level welfare effects: spot-only and index-priced

Next, we examine the welfare effects for different types of shippers and carriers under

the spot-only and index-priced counterfactual scenarios. These effects operate through both

price and non-price channels. Intuitively, a higher share of spot transactions reduces search

costs, while improvements in allocative efficiency lead to lower spot prices. These changes

in spot market conditions shape the outside options of shippers and carriers seeking to form

relationships, thereby influencing how relationship surplus is divided between them.
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Table 7: Effects on search costs and spot rates

Fixed-rate Spot-only Index-priced

Soft market
∆κ ($/mile) −0.75 0.09
Average spot rate ($/mile) 1.61 1.40 1.57

Tight market
∆κ ($/mile) −0.43 0.22
Average spot rate ($/mile) 2.13 2.00 2.10

Table 7 presents the average spot rates under the fixed-rate, index-priced, and spot-only

scenarios, along with changes in search costs in the latter two scenarios relative to the fixed-

rate baseline. As expected, the spot-only scenario results in a substantial reduction in search

costs—particularly in soft markets, where the baseline spot share is low. This is accompanied

by a significant decline in spot rates. In contrast, the index-priced scenario increases search

costs, but may still lead to lower spot rates, as the use of index-priced contracts contributes

to improved allocative efficiency.

Figure 13 illustrates how these price and non-price effects translate into changes in the

average per-period payoff ($/mile) for different groups of shippers and carriers under the

index-priced and spot-only counterfactuals, relative to the baseline of fixed-rate contracts.

We consider four groups: (i) shippers and (ii) carriers who would form relationships at

baseline, and (iii) shippers and (iv) carriers who operate exclusively in the spot market.

First, we examine the spot-only counterfactual. Our findings suggest that eliminating

relationships would substantially hurt shippers and carriers who would manage to form

relationships in the current institution. However, spot carriers would unambiguously benefit

from the spot-only counterfactual, due to both an increase in demand for spot loads and a

reduction in search costs for spot loads.

Second, we examine the index-priced counterfactual—one in which we observed only a

small change in aggregate welfare relative to the baseline (Figure 6). However, this aggregate

finding masks substantial distributional consequences across agent types. We find that the

index-priced counterfactual tends to favor shippers over carriers, with the largest welfare

loss borne by carriers operating only in the spot market. These carriers are often small

owner-operators, who might be forced to exit the market if faced with such loss.

A more subtle finding is that the widespread adoption of relationship-optimal index-priced

contracts would not necessarily guarantee welfare gains for relationship participants either.

Moreover, market conditions would affect how such gains (if any) are split. Specifically,

we find that relationship carriers would incur substantial welfare loss from the index-priced

counterfactual in a soft market, when their bargaining position is weak. The reason is that
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Figure 13: Distributional consequences by different groups of shippers and carriers
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Note: Shippers’ benefits from having their loads shipped are normalized to zero.

a thinner and less efficient spot market in the index-priced counterfactual would worsen

carriers’ outside option, directly hurting them when exercising this option and indirectly

weakening their bargaining outcomes at the auction stage.

F Estimation details: Model primitives

F.1 Shippers’ punishment schemes and instrumental objects

We estimate an AR(1) process for the calendar-based spot rate (p̃ℓτ ) normalized by the

average spot rate,
p̃ℓτ

Rateℓ
= ρ0 + ρ1

p̃ℓτ−1

Rateℓ
+ ϵℓτ .

We then scale the estimated calendar-based process by the frequency of shipper-carrier in-

teractions in a relationship to obtain the load-based spot (p̃ℓt) process in that relationship.

We calibrate the daily discount rate to 0.992, under the assumption that (i) shippers

and carriers are patient and (ii) auction periods end randomly with an estimated average

duration of 381 days. We scale this daily discount rate by the frequency of shipments within

each shipper-lane-auction to obtain the corresponding discount rate δiaℓ.

Next, we describe how we estimate shippers’ punishment scheme. We parameterize the

decay parameter in a relationship as a common daily decay parameter, α, scaled by the

frequency of shipper-carrier interactions in that relationship. Parameters of the shippers’

strategy include the daily decay parameter α, the initial rejection index R0, and parameters

(αk)
5
k=1 for the effects of the rejection index Rt−1, relationship characteristics Xiaℓ, and
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market condition (p̃ℓt − p̃ℓ0) on demotion probability. We estimate these parameters in two

steps. First, we estimate a linear counterpart of equation (6), searching in an outer loop for

the values of (α,R0) that minimize the GMM objective. In the inner loop, we instrument

for the rejection index Rt−1 with (i) an index of past spot rates analogously constructed

from the candidate values of (α,R0) and (ii) the average spot rates in each of the last four

weeks. The second set of instruments give us identification power to pin down (α,R0).

Given the estimates of (α,R0) from the GMM procedure, we estimate (αk)
5
k=1 from the

Probit specification using the same set of instruments. Table 6 presents our estimates of

shippers’ strategy in both the linear (GMM) and Probit (IV Probit) specifications.

The final instrumental object is the distribution of the number of bidders, which cap-

tures the competitiveness of the auctions for long-term contracts. Our empirical model

differs from the theoretical model in Section 4 in that we allow the number of bidders in an

auction to be stochastic, Na ∼ Binomial(N, q). Then the number of bidders who pass the

shipper’s individual rationality constraint and become either primary or backup carriers is

na ∼ Binomial(N, q̃), where q̃ = q(1−Gη+p(r)). To facilitate estimation, we assume common

parameters (N, q̃) for all auctions.

The empirical challenge in estimating the distribution of the number of bidders is that

we do not directly observe na; instead, we observe its lower bound, the number n̂a of carriers

that receive at least one request within the auction period. We thus estimate (N, q̃) via a

calibration exercise. First, we take the maximum of n̂a across all auctions as an estimate of

N . Second, given this estimate of N and a value q̃, we calibrate the distribution of n̂a, taking

into account the number of loads within an auction period, the probability that a load is

rejected conditional on being rejected by higher-ranked carriers, and the current spot rate.

Matching the mean of this simulated distribution to its empirical counterpart pins down q̃.

We estimate that the number of effective bidders is distributed as Binomial(20, 0.17), which

has an average of 3.4 bidders per auction.

F.2 Carriers’ transformed costs and rents

Carriers’ transformed costs and rents are estimated by maximizing the likelihood of their

observed accept/reject decisions. Given the observed standard deviation σζℓ of spot rate and

parameter values (µ̃ciaℓ, σ
c, ηijℓ + pijℓ + κℓ), the likelihood contribution of relationship ijℓ is

L
(
(1{dijℓt = accept}, Rijℓt−1, p̃ℓt)

Tijℓ
t=1 ;σ

ζ
ℓ , µ̃

c
iaℓ, σ

c, ηijℓ + pijℓ + κℓ

)
(12)

∝
Tijℓ∏
t=1

∏
D∈{{accept},{idle,spot}}

Pr(dijℓt ∈ D|Rijℓt−1, p̃ℓt;σ
ζ
ℓ , µ̃

c
iaℓ, σ

c, ηijℓ + pijℓ + κℓ)
1{dijℓt∈D}.
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Here, the acceptance probability in each period t of relationship ijℓ is

Pr(dijℓt = accept|Rijℓt−1, p̃ℓt;σ
ζ
ℓ , µ̃

c
iaℓ, σ

c, ηijℓ + pijℓ + κℓ) (13)

=Φ

(
p̄(Rijℓt−1, p̃t|ηijℓ + pijℓ + κℓ;σ

ζ
ℓ , µ̃

c
iaℓ, σ

c)− p̃ℓt

σζℓ

)

× Φ

(
p̄(Rijℓt−1, p̃t|ηijℓ + pijℓ + κℓ;σ

ζ
ℓ , µ̃

c
iaℓ, σ

c)− µ̃iaℓ
σc

)
.

A key input to the carrier’s acceptance probability is his full compensation p̄. For each set

of parameter values, we solve for the carrier’s full compensation by a fixed-point algorithm

iterating between equation (3) and the Bellman equation of the carrier’s value function.

We exploit carriers’ likelihood contribution in two separate steps: first, to estimate trans-

formed costs using long-lasting relationships (T ≥ 30) and second, to estimate the distribu-

tion of carrier rents pooling relationships of all lengths.

Maximum-likelihood estimation of long-lasting relationships

In this first step, we use data only from relationships with at least 30 offers to estimate

the parameters of transformed costs and rents {(µ̃ciaℓ, σc, ηijℓ + pijℓ + κℓ)}Tijℓ≥30
in these

relationships. Focusing on long-lasting relationships have two potential selection issues:

long-lasting relationships tend to have either (i) high rents or (ii) low cost draws. Since

a carrier’s rent in his relationship is a free parameter when we estimate cost parameters,

selection due to (i) is not a concern. Selection due to (ii) can be corrected by conditioning

the likelihood of observed carriers’ decisions on whether these carriers survive to the next

period,

Pr(dijℓt = accept|Rijℓt−1, p̃ℓt, surviving)

=
[1− σ0(αRijℓt−1, p̃t)] Pr(dijℓt = accept|Rijℓt−1, p̃ℓt)(
[1− σ0(αRijℓt−1, p̃t)] Pr(dijℓt = accept|Rijℓt−1, p̃ℓt)

+[1− σ0(αRijℓt−1 + (1− α), p̃t)] Pr(dijℓt = reject|Rijℓt−1, p̃ℓt)

)

if t < Tijℓ and

Pr(dijℓt = accept|Rijℓt−1, p̃ℓt, non-surviving)

=
σ0(αRijℓt−1, p̃ℓt) Pr(dijℓt = accept|Rijℓt−1, p̃ℓt)(
σ0(αRijℓt−1, p̃t) Pr(dijℓt = accept|Rijℓt−1, p̃ℓt)

+σ0(αRijℓt−1 + (1− α), p̃t) Pr(dijℓt = reject|Rijℓt−1, p̃ℓt)

)
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if t = Tijℓ and the relationship is ended because of a demotion.

To speed up estimation, we loop through the common cost variance σc ∈ {0.1, 0.2, ..., 2.0}
in an outer loop and estimate mean transformed cost µ̃ciaℓ and transformed rent (ηijℓ+pijℓ+κℓ)

for each relationships with Tijℓ ≥ 30 in an inner loop.

Estimating cost parameters and extrapolating cost estimates to all lanes

We exploit our estimates {̂̃µciaℓ}Tijℓ≥30
of mean transformed costs in two ways. First, we use

them as the left-hand-side variable to estimate the cost parameters in equation (7). Second,

we extrapolate these cost estimates to all relationships by running a flexible polynomial

regression of these estimates on observed relationship and lane characteristics,

̂̃µciaℓ = h(X̃iaℓ) + ϵ̃ciaℓ. (14)

Together, the extrapolated transformed costs from equation (14) and our estimates of cost

parameters in equation (7) provide estimates (κ̂ℓ)ℓ of search costs and (µ̂ciaℓ)iaℓ of mean

operational costs in all relationships. The common cost variance σ̂c is obtained from the

previous, maximum-likelihood, step.

Recall that X̃iaℓ includes both observable relationship-level and lane-level characteris-

tics. The relationship-level characteristics include the log of average monthly volume and

the coefficient of variation of the shipper’s weekly volume. The lane-level characteristics in-

clude the average spot rate Rateℓ, the average spot volume Volumespotℓ , the average distance

Distanceℓ on lane ℓ, an indicator Tighta of whether the relationship was formed during a

tight market, and the measure Imbalanceℓ of backhaul volume relative to forehaul volume.

Note that Rateℓ,Volumespotℓ ,Tighta, and Imbalanceℓ are equilibrium objects, which capture

the underlying differences in demand and supply factors across lanes. All remaining steps in

our estimation condition on X̃iaℓ.

EM algorithm for pooling relationships

Given the cost estimates ((κ̂ℓ)ℓ, (µ̂
c
iaℓ)iaℓ, σ̂

c) from the previous steps, we flexibly estimate

the conditional distribution of winning carriers’ rents using a conditional mixture model.

Specifically, we assume that each shipper-lane-auction belongs to one of seven groups, g =

1, ..., 7, with the probability of being in each group g given by πg. Conditioning on being

in group g, the distribution of rent r of the winning carrier j in auction iaℓ has a Normal

distribution,

rijℓ|iaℓ∈g ∼ Normal(βrgX̃iaℓ, σ
r
g).
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That is, we discipline the variation of carrier rents across auctions by allowing the condi-

tional mean of each component distribution to vary linearly with observed relationship and

lane characteristics; however, we do not allow these characteristics to influence the mixing

probabilities (πg)g.

To estimate the mixing probabilities and the component distributions, we adapt an EM

algorithm by Train (2008). First, before running the EM algorithm, we pre-calculate the like-

lihood contribution of each relationship at each grid point of carrier rent in {0.0, 0.1, ..., 5.0}.
Since calculating the likelihood contribution is computationally intensive, performing this

step only once and using linear interpolation from the above grid points in the integration

step substantially speeds up our EM algorithm.

Except for this interpolation procedure, the EM algorithm is standard. In the M-step,

we integrate the likelihood contribution in equation (12) over the mixture of carrier rents

implied by the estimated parameters from the previous E-step. With the likelihood at each

grid point already calculated, we only need to update the intepolation weights on these

points to complete the integration. In the E-step, we update the mixing probabilities {πg}g,
the mean-shifting parameters {βrg}g, and variances {σg}g of the component distributions.

We iterate between these two steps until convergence.

The output of this procedure is the distribution of the winning carrier’s rent r conditional

on X̃iaℓ and on r ≥ riaℓ, where riaℓ is the lowest carrier rent in auctions with characteristics

X̃iaℓ. We take the fifth percentile of this distribution as our estimate of riaℓ.

F.3 Estimating conditional bidding functions

With a stochastic number of bidders, na ∼ Binomial(N, q̃), the distribution of the winning

carrier’s rent is (
1− q̃ + q̃

[
Gη+p(r|X̃iaℓ)−Gη+p(riaℓ|X̃iaℓ)

1−Gη+p(riaℓ|X̃iaℓ)

])N
− (1− q̃)N

1− (1− q̃)N
.

This distribution, together with our estimates of (N, q̃) from above (see F.1), pins down the

winning probability of a carrier with rent r ≥ riaℓ,(
1− q̃ + q̃

[
Gη+p(r|X̃iaℓ)−Gη+p(riaℓ|X̃iaℓ)

1−Gη+p(riaℓ|X̃iaℓ)

])N−1

≡ [G̃η+p(r|X̃iaℓ)]
N−1.

Our estimation of the conditional bidding functions b(·|X̃iaℓ) follows our identification

argument closely, though with two exceptions. First, since we allow for a stochastic number

of bidders, the winning probability of a carrier with rent r is [G̃η+p(r|X̃iaℓ)]
N−1. Second,
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we select the lowest shipper rent as the level that sets the lowest match quality to zero

rather than one that makes the shipper’s individual rationality constraint bind at the lowest-

quality relationship. We take this approach for two reasons. First, using this approach,

our estimates provide lower bounds on shippers’ match-specific gains; higher estimates of

these gains would only strengthen our conclusion that relationships’ benefits outweigh there

negative externalities. Second, since the shipper’ expected payoff is relatively flat in her rent

for low levels of carrier rent, inverting the shipper’s expected payoff at our estimate riaℓ of

the lowest carrier rent would give an unreliable estimate of the lowest shipper rent.

F.4 Estimating the joint distribution of match-specific gains

For each tuple X̃iaℓ of observable relationship and lane characteristics, we estimate the

conditional distributions Gη+p(·|X̃iaℓ ∪ { pijℓ}) of carrier rents and Gp(·|X̃iaℓ) of contract

rates as mixtures of conditional Normal distributions, using EM-algorithms as in F.2. Given

these conditional distributions and the bidding function from F.3, we simulate for each tuple

X̃iaℓ the joint distribution of rents and contract rates (η+ p, p, ψ− p), which effectively pins

down the joint distribution of match-specific gains (ψ, η).

G Estimation details: Welfare analysis

Since our relationship data covers only a subset of shippers, we cannot reliably estimate

aggregate relationship demand at the KMA-to-KMA level. To address this limitation, we

aggregate lanes into seven clusters using K-means clustering based on the following lane

characteristics: the average spot rate (Rateℓ), the log of average spot volume (Volumeℓ),

and the average distance (Distanceℓ). The selection of these characteristics—which are equi-

librium objects shaped by underlying demand and supply factors—reflects our intention to

aggregate lanes in a way that captures these underlying demand and supply factors (Bon-

homme and Manresa, 2015). Figure 14 illustrates these clusters. The left panel plots the

log of the relationships’ average spot volume (horizontal axis) and the relationships’ average

spot rate (vertical axis), with the colors indicating the cluster to which each relationship

belongs. The right panel plots the median cost (vertical axis) and the log of predicted trade

flows (horizontal axis) for each cluster. The size of each cluster’s point represents the number

of relationships within that cluster. These scatter plots suggest that the equilibrium spot

price and volume effectively separate the underlying demand and supply factors. Finally, we

split each cluster in two according to market phase with the year 2016 representing a soft

market and 2018 a tight market. We perform welfare analysis separately for each of these

14 resulting clusters of lanes and market phase (year).
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Figure 14: Seven clusters of lanes identified by K-means clustering
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In performing our welfare analysis, we make the following assumptions: First, in period

t = 0, there are L∗ shipper-carrier relationships formed and C∗ carriers in the spot market.

Second, as relationships dissolve over time, shippers and carriers in those relationships join

the spot market. This process, dictated by the shippers’ punishment, decreases the number

of relationships to Lt and increases the spot capacity to Ct in period t, while keeping fixed

total carrier capacity, i.e., Lt + Ct = L∗ + C∗.63 Finally, exogenous shock D∗
t contributes

to direct spot demand Dt. Our welfare analysis involves two steps: First, we estimate the

underlying aggregate demand and capacity (L∗, C∗, D∗
t )

52
t=1. Second, we calculate welfare in

the current and alternative institutions while keeping these underlying factors fixed.

G.1 Estimation of aggregate demand and capacity

For each cluster of lanes and each market phase, we recover the tuple (L∗, C∗, D∗
t )

52
t=1 of

initial relationships, capacity, and shocks to spot demand by leveraging (i) observed prices

and volumes in both relationships and the spot market and (ii) our estimates of match-

specific gains from relationships and of carriers’ costs. We recover (L∗, C∗, D∗
t )

52
t=1 by methods

of moments—specifically, by matching the model-predicted paths of relationship demand,

relationship volume, and spot volume (Lt, L
primary
t , St)

52
t=1 to their empirical counterparts.

To derive the model-predicted moments, we proceed in two steps. First, each guess

(L∗, C∗) of initial relationships and capacity, together with our model estimates in Section 6

and observed prices, allows us to forward-simulate a path (Lt, L
primary
t , St)

52
t=1 of relationship

demand, relationship volume, and spot volume. Recall that Ht−1 = (Rij,t−1, ηij + pij, ψij −
63In reality, new relationships are formed over time and carriers can adjust their capacities by buying and

selling trucks. To help with the estimation of market dynamics, we make the simplifying assumptions that
all relationships are created in period 0 and capacity is fixed within a market phase.
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pij)ij captures the relevant information about relationship stock at the end of period t− 1.

At the beginning of period t, shippers terminate some of these relationships—a process

influenced by carriers’ rejection indices and the current spot rate—leaving

Lt(p̃t|Ht−1) =

∫
ij∈Ht−1

(1− σ0(Rij,t−1, p̃t))︸ ︷︷ ︸
Surviving relationships

(15)

relationships.64 Carriers in terminated relationships join the spot market, increasing spot

capacity to

Ct(p̃t|Ht−1) = Ct−1 +

∫
ij∈Ht−1

σ0(Rij,t−1, p̃t)︸ ︷︷ ︸
Newly terminated relationships

. (16)

Given the relationships that persist into period t, the relationship and spot volumes realized

at the end of this period further depend on carriers’ decisions. Recall that a primary carrier’s

decision to accept a load within his relationship, serve the spot market, or remain idle depends

on the relationship stock only through his full compensation. Consequently, in aggregate, the

decisions of carriers within relationships can be summarized by the probability distribution

of full compensation across carriers, denoted by µ(p̄|p̃t,Ht−1). The relationship volume and

spot volume realized in period t are

Lprimary
t (p̃t|Ht−1) = Lt(p̃t|Ht−1)

∫ ∞

p̃t

F (p̄− κℓ)dµ(p̄|p̃t,Ht−1) (17)

and

St(p̃t|Ht−1) = (Lt(p̃t|Ht−1)µ(p̃t|p̃t,Ht−1) + Ct(p̃t|Ht−1))F (p̃t − κℓ) (18)

respectively. That is, relationship carriers whose full compensation exceeds both the current

spot rate and the sum of operational and search costs serve relationship loads. Carriers

whose full compensation is lower than the current spot rate serve spot loads if and only

if their costs are sufficiently low. Matching the forward-simulated path (Lt, L
primary
t , St)

52
t=1

from equations (15), (17), and (18) to their empirical counterparts pins down the initial

relationships and spot capacity (L∗, C∗).

Second, we pin down the exogenous demand shock D∗
t in each period from the market

64Here, with some abuse of notation, we write ij ∈ Ht−1 for a relationship that is maintained at the end of
period t− 1. Similarly, we write ij ∈ Lt(p̃t|Ht−1) for a relationship that survives the shipper’s punishment
strategy at the beginning of period t.
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clearing condition. Specifically, this demand shock, together with all terminated relation-

ships, contributes to direct spot demand,

Dt(p̃t|Ht−1) = L∗ − Lt(p̃t|Ht−1)︸ ︷︷ ︸
All terminated relationships

+D∗
t ; (19)

in equilibrium, the total demand from relationships and spot equals the total realized volume,

Lt(p̃t|Ht−1) +Dt(p̃t|Ht−1) = Lprimary
t (p̃t|Ht−1) + St(p̃t|Ht−1). (20)

That is, exogenous demand shocks help rationalize the residual variation in spot rates that

is not explained by relationship dynamics.

Finally, we explain how to derive the empirical counterparts of our volume moments,

(Lt, L
primary
t , St)

52
t=1, from our merged relationship and spot data. For each period t, we

obtain the total number of loads L̂t requested by the shippers in our sample, the loads

L̂primary
t accepted by the primary carriers, the loads L̂backup

t accepted by the backup carriers,

as well as the residual loads that must be fulfilled in the spot market. From our spot data, we

obtain the number of spot loads Ŝ ′
t, scaled to reflect the 80% aggregate share of relationship

transactions (either by primary or backup carriers) across all lanes. For welfare analysis,

we treat relationship loads fulfilled by backup carriers as spot loads. This decision to pool

backup and spot loads is based on the evidence in Appendix E.1, which suggests that the

performance of backup carriers is more similar to that of spot carriers than to that of primary

carriers. Thus, our empirical moment for realized spot volume is Ŝt = Ŝ ′
t + L̂backup

t . When

we pool loads fulfilled by backup carriers with spot volume, the spot share under the current

institution becomes 38%.

G.2 Welfare of the current institution

As explained above, a tuple (L∗, C∗, D∗
t )

52
t=1, together with the observed path (p̃t)

52
t=1 of

spot rates, contract rates, and model estimates of relationship and cost parameters, allows

us to forward-simulate the dynamics of relationships and their interactions with spot move-

ments. We define welfare in period t in the current institution as

W 0
t =

∫
ij∈Lt(p̃t|Ht−1)

EF [(θij − cjt)1{p̄(Rij,t−1, p̃t|ηij + pij) ≥ max{p̃t, cjt + κ}}]

+

 Ct(p̃t|Ht−1)︸ ︷︷ ︸
direct spot capacity

+Lt(p̃t|Ht−1)µ(p̄|p̃t,Ht−1)︸ ︷︷ ︸
overflow capacity

 (−κ− EF [cjt|cjt ≤ p̃t − κ])F (p̃t − κ).
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The first component represents welfare gains from loads accepted within relationships. The

second component represents welfare gains from spot transactions, which are fulfilled both

by direct spot carriers and carriers whose full compensations from accepting relationship

loads are less than the current spot rate. Crucially, our welfare measure normalizes the gains

to shippers from having their loads fulfilled by spot carriers to zero. Since total shipment

demand remains fixed across our counterfactual analyses, this normalization does not affect

our welfare comparison.65

G.3 Welfare of counterfactual institutions

We compare welfare under the current institution with that achieved under counterfactual

institutions that vary the split between relationship and spot transactions while keeping the

underlying demand and capacity fixed. To focus on the relationship-spot split, we derive the

constrained first-best welfare that could be achieved for any given share of spot volume in

total volume. We will show that this is a linear programming problem. Moreover, we show

that this constrained first-best welfare can be achieved by pairing index-priced contracts

with an appropriate tax on relationship transactions.

To build intuition, consider the sub-problem of allocating carriers to relationships and

spot in each period while keeping the path St = (St)
52
t=1 of spot volumes fixed. Fix the set

of relationships L∗ and spot carriers C∗. With some abuse of notation, we write j ∈ L∗ for

a carrier with a relationship, whose match quality with shipper i(j) is θi(j)j, and we write

j ∈ C∗ for a spot carrier. An allocation A : j 7→ {accept, spot, idle} maps each carrier

j ∈ L∗ ∪ C∗ to a decision such that A(j) ∈ {spot, idle} for all j ∈ C∗. The constrained

first-best allocation in period t, for a given path of spot volumes, solves

W t(S
t) =max

A

∫
j∈L∗

1{A(j) = accept}(θi(j)j − cjt)

+

∫
j∈L∗∪C∗

1{A(j) = spot}
(
−cjt − κ

(
S̄
))

s.t.

∫
j∈L∗

1{A(j) = accept} = L∗ +D∗
t − St∫

j∈L∗∪C∗
1{A(j) = spot} = St,

65Note that by adjusting the split between relationship and spot transactions in counterfactual analyses,
we allow spot rates to vary across different institutions. In principle, changing spot rates could influence the
aggregate demand for trucking services. We shut down this channel to focus on allocative efficiency between
relationship and spot transactions. As we later show, allocative efficiency could be improved by levying a
tax on relationship transactions. Similarly, concerns about the extensive margin of trucking services could
be addressed through a tax or subsidy on the industry as a whole.
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where S̄ = 1
52

∑52
t′=1 St′ .

Let λ1t and λ2t be the Lagrange multipliers associated with the constraints on relation-

ship and spot volumes, respectively, in period t. The Lagrangian of the above constrained

optimization problem is∫
j∈L∗

[
1{A(j) = accept}(θi(j)j + λ1t − cjt) + 1{A(j) = spot}(λ2t − cjt − κ(S̄))

]
+

∫
j∈C∗

1{A(j) = spot}(λ2t − cjt − κ(S̄)).

The solution to this problem involves each j ∈ L∗ choosing the maximal in {θi(j)j + λ1t −
cjt, λ

2
t − cjt − κ(S̄), 0} and each j ∈ C choosing the maximal in {λ2t − cjt − κ(S̄), 0}. That

is, the constrained first-best allocation is achieved by combining index-priced contracts with

a period-specific corrective tax on relationship transactions. In equilibrium, the spot rate

equals λ2t and the corrective tax equals λ2t − λ1t .

Given the above sub-problem, the constrained first-best welfare associated with spot

share s ∈ [0, 1] can be written as

W (s) =max
St

52∑
t=1

W t(S
t)

s.t.
1
52

∑52
t′=1 St′

L∗ + 1
52

∑52
t′=1D

∗
t′

= s

0 ≤ St ≤ L∗ +D∗
t ,∀t.

Thus, the market-level first best equals maxs∈[0,1]W (s).

Besides this first-best benchmark, we will zoom in onto two special cases: (i) the spot-

only scenario and (ii) the index-priced scenario with zero tax on relationship transactions.

First, in the spot-only scenario, each carrier either serves the spot market or remains idle,

resulting in aggregate welfare of

W 1 =
1

52

52∑
t=1

(L∗ +D∗
t )(−κ1 − EF [ct|ct ≤ p̃1t − κ1])

s.t. κ1 = κ

(
1

52

52∑
t=1

(L∗ +D∗
t )

)
L∗ +D∗

t = (L∗ + C∗)F (p̃1t − κ1),∀t.

Here, κ1 is the equilibrium search cost and (p̃1t )
52
t=1 is the market-clearing path of spot rates.

Second, consider the index-priced scenario with zero tax. Denote by κ2 the equilibrium
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search cost in this scenario and by (p̃2t )
52
t=1 the equilibrium price path. In this case, only

relationships with θ ≥ −κ2 are formed, and carriers in these relationships never go to the

spot market; they accept relationship loads if and only if θ + p̃2t ≥ cjt. Carriers in potential

relationships with θ < −κ2 join the spot market, giving rise to new spot capacity C∗
2 ; these

carriers serve the spot market as long as p̃2t ≥ cjt + κ2. Aggregate welfare in this case is

W 2 =
1

52

52∑
t=1

(
L∗ ∫

θ≥−κ2 F (θ + p̃2t )(θ − EF [ct|ct ≤ θ + p̃2t ])d[G
θ]1:N(θ)

+C∗
2F (p̃

2
t − κ2)(−κ2 − EF [ct|ct ≤ p̃2t − κ2])

)

s.t. κ2 = κ

(
1

52

52∑
t=1

C∗
2F (p̃

2
t − κ2)

)
C∗

2 = C∗ − L∗[Gθ]1:N(−κ) + L∗[Gθ]1:N(−κ2)

L∗ +D∗
t = L∗

∫
θ≥−κ2

F (θ + p̃2t )d[G
θ]1:N(θ) + C∗

2F (p̃
2
t − κ2), ∀t.

This aggregate welfare includes the welfare of shippers and carriers that only operate in the

spot market as well as those that form relationships. For the latter group, notice that the full

relationship surplus, denoted by Surplus(θij|p̃0), is realized, and that the shipper’s surplus

is precisely the fixed fee b0ij that the winning carrier bids. For a relationship with match

quality θij ≥ −κ2, this fee equals

Surplus(θij|p̃0)−
∫ θij
−κ2 Surplus(θ|p̃0)d[G

θ]1:N(θ)

[Gθ]1:N(θij)
.
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