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Abstract

This paper proposes a novel learning model on social networks that captures settings where
individuals interact frequently on multiple, relatively short-lived topics. In this model, each
period features a new draw of nature and multiple rounds in which information arrives, gets
aggregated, and diffuses through network links. The repetitive nature of interactions across
periods allows for a separation between learning about the environment and aggregating in-
formation about the current state. A class of empiricist learning rules achieve convergence
of learning on all networks. On clique trees, these learning rules further achieve strong
efficiency in information aggregation. The paper also presents a converse to the positive
efficiency result and identifies distinct reasons why efficiency is hard to obtain in general

circumstances, even though convergence of learning holds generally.

1 Introduction

People interact in complicated networks while often having little understanding about the
structure of these networks. For example, using network data and surveys from 75 villages
in India, Breza et al. (2018) find that 46% of respondents are not certain enough to elicit

a guess about whether two given individuals have financial, social or informational links.
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Furthermore, when the respondents do make guesses, only 37% of them are correct. The
reality that knowledge about the network structure is local poses a challenge to information
aggregation, since individuals may fail to correctly assess the reliability of information
from their neighbors.

Previous papers in the literature that relax common knowledge of the full network have
abstracted from learning.! An open question is whether individuals with limited knowledge
of their complicated environment, through repeated interactions, could learn to aggregate
information from their neighbors optimally. Furthermore, how does such learning affect
the quality of information aggregation by the network as a whole?

To answer these questions, I propose a novel model of information diffusion and ag-
gregation in settings like Facebook or Twitter. Three key features of these social platforms
motivate my modeling choices. First, individuals interact frequently on multiple, relatively
short-lived topics. Second, the diffusion of information depends on an underlying network
of individuals, who are quick to respond to the posts of their friends (Facebook) or of those
they follow (Twitter). Third, the underlying network is rich, making it impossible for an
individual to perfectly know others’ links. My model captures these features in a stylized
way. It features in each period a new draw of nature and random, asynchronous timing
of signal arrivals and decision making. Local knowledge of the network structure and lo-
cal observability are assumed. Despite individuals’ limited knowledge and observability,
a class of empiricist learning rules achieve convergence of learning on all networks. The
induced long-run play is then shown to achieve strong efficiency on clique trees, tree-like
networks where a node can be replaced by a set of fully linked individuals. In general cir-
cumstances, however, there are systematic ways in which misalignment of interests arises,
challenging efficiency.

My model departs from the literature in two main ways:

First, it has two layers of timing that separate learning about the environment from
aggregating information about the current state. The infinite number of periods put a repet-
itive structure on the interactions between each individual and her environment, facilitating
learning about the environment. The multiple rounds within each period allow information

about a newly drawn state of the world to spread through network links. Together with the

"Most papers in the social learning literature maintain common knowledge of the network topology and
focus on Perfect Bayesian equilibria. DeGroot-style learning papers, for example, relax these common
knowledge assumptions but use heuristics of updating rules.



network structure, the random arrivals of newly drawn private signals determine the order
of play and the set of actions observed by each individual in each period. This means that
each period is a game of information aggregation where individuals know little about how
information from different sources have diffused throughout the network before reaching
them.

Second, each individual in my model faces vast uncertainty about the underlying en-
vironment. This includes objective uncertainty, captured by the network structure, the
distribution of private signals and their arrivals, and strategic uncertainty, encoded in how
other individuals map their private observations to actions. Specifically, each individual
only knows the set of her neighbors, her own private signal as well as her own belief-
updating rule and decision rule. Moreover, others’ belief-updating rules and decision rules
are treated as primitives of the learning environment rather than strategic choices. This
paper’s objective is to find a class of learning rules whose performance is robust to indi-
viduals’ vast uncertainty about their environment.

One such class is the class of empiricist learning rules. These are learning rules that
believe in stationary environments and asymptotically believe in the empirical distribution
of observations. Empiricist learning rules rest on two ideas. First, to optimally aggregate
information in stationary environments, an individual only need to learn the stationary dis-
tributions of her observation conditional on each state of the world. In other words, the
collection of these stationary conditional distributions, referred to as a local model, is the
key object of learning for her. Second, since each individual possesses an independent and
informative signal, there is a one-to-one map between an individual’s local model and the
unconditional distribution of her observation. This further reduces the object of learning
to the unconditional distribution of an individual’s observation, which, in stationary envi-
ronments, can be learned asymptotically from its empirical counterpart. In Proposition 1,
I show that if an individual’s environment is indeed stationary, empiricist learning rules
ensure asymptotic learning of her true local model and thus, asymptotic optimality.

What if all individuals on the network actively learn with empiricist learning rules,
rendering the underlying environment nonstationary? In which cases will play converge
and information aggregation be socially optimal?

Theorem 1 shows that convergence of beliefs and of play holds in all environments

where individuals adopt empiricist learning rules and “smooth” optimal decision rules.



In each round, as the play of those neighbors that acted before an individual converges,
the local environment of that individual becomes approximately stationary. Empiricist
learning rules then ensure convergence of her belief about her local environment, in that
round, and smooth decision rules translate convergence of beliefs into convergence of play.
Crucially, empiricist learning rules separate learning in different rounds, thus avoiding
potential mislearning in later rounds to contaminate learning in earlier rounds.

In fact, the convergence result in my setting extends to richer settings, suggesting that
adaptations of my model could provide a framework for studying other games of informa-
tion aggregation. This framework starts with building a model where the game of interest
is played repeatedly. This model is then analyzed in two steps. First is to achieve conver-
gence of learning about local models, or elements of the environment that are relevant to
each individual’s decision making. Second is to evaluate the per-period game where each
individual knows her local model perfectly. Compared to a direct analysis of the game
of interest, this framework generates predictions about individuals’ play as the long-run
outcome of a learning process. In doing so, it makes minimal assumptions on individuals’
knowledge of their environment and of others’ play.

The remainder of this paper focuses on the long-run quality of information aggregation
in my setting when all individuals use empiricist learning rules and smooth decision rules.

Theorem 2 establishes a strong positive result: on clique trees, the long-run play in-
duced by empiricist learning rules and smooth decision rules is strongly efficient, among
all stationary plays that treat the two states symmetrically. Two properties of clique trees
guarantee this result. First is conditional independence of neighbors’ actions. Under sym-
metric treatment of the two states of the world, this property implies that the overall infor-
mativeness of all neighbors’ actions is increasing in the informativeness of each neighbor’s
action. Second, clique trees ensure local alignment of interests: an individual maximizes
the informativeness of her action to her neighbors exactly by optimally aggregating infor-
mation from other neighbors of hers. The proof of Theorem 2 uses an inductive argument
to show that under conditional independence of neighbors’ actions, local alignment of in-
terests leads to global alignment of interests. Since the long-run play induced by empiricist
learning rules and smooth decision rules is individually optimal, it follows that this long-
run play is strongly efficient; that is, it is optimal for every individual on the network.

What if the underlying network is not a clique tree, or the notion of efficiency is weak-



ened, or the environment is not symmetric? Theorem 3, which is a weak converse to Theo-
rem 2, illustrates the role of clique trees in achieving efficiency: on any network that is not
a clique tree, substantive misalignment of interests arises for some diffusion process and
signal structure. This theorem generalizes two examples of networks that are not clique
trees, where either conditional independence of neighbors’ actions or local alignment of
interests fails. Example 1 shows that when there is conditional correlation between differ-
ent information sources, it might be possible to reduce the informativeness of an individual
source in a way that breaks the correlation and improves the informativeness of all sources
combined. Example 2 illustrates how an individual might play optimally against a dis-
tribution that pools diffusions irrelevant to her neighbors, and thus fails to optimize the
informativeness of her action to these neighbors. Moreover, forces that challenge strong
efficiency are likely to also challenge Pareto efficiency. In two examples that extend Exam-
ple 1 and Example 2, I show that Pareto efficiency fails because individuals can trade favors
across rounds. Lastly, coordinated biases about the two states of the world can improve the
informativeness of combined sources. This makes strong efficiency hard to achieve when
asymmetric plays are considered for comparison.

In the setting of this paper, that individuals cannot trace the path of their information
does not hurt learning but it generates misalignment of interests. In other words, empiri-
cist learning rules solve the problem of local knowledge of the network structure, ensuring
asymptotic learning and individual optimality. However, the gap between individual op-
timality and social optimality remains. This gap depends on all elements of the objective
environment: the network, the diffusion process, and the quality of private signals.

My paper does not follow any previous work closely but it shares elements with dif-
ferent branches of literature. The modeling of each period is similar to recent models of
social learning by Acemoglu et al. (2011) and Lobel and Sadler (2015) in that individuals
play sequentially, after observing a random subset of others’ actions. My model addition-
ally generates randomness in the order of play, tying both the realized order of play and
observation sets to the underlying network structure. Moreover, their papers focus on late
decision makers in large populations, as standard in the social learning literature, while my
paper concerns the quality of information aggregation of every individual.

The idea of exploiting the stationarity of the objective environment across periods to
learn other individuals’ persistent types is shared with Sethi and Yildiz (2016, 2019), who



study advice-seeking networks where advice reveals information both about the current
state of the world and about the perspective of the advice giver. In their papers, confound-
edness of sources is absent and advice-seeking is an active choice. In contrast, individuals
in my paper receives information passively on exogenous networks, but their types as per-
ceived by others arise endogenously from how they learn and aggregate information.

My paper draws a connection between the network literature and the literature on learn-
ing in games, where learning rules are often motivated by stationary problems. Specifically,
the class of empiricist learning rules defined in my paper relates to Fudenberg and Kreps
(1993) in the idea that the long-run belief about a stationary distribution should be concen-
trated on its empirical frequency. Empiricist learning rules take a further step. They use
properties that hold in all permissible network environments to back out the conditional
distributions of observables from the unconditional distribution.

Lastly, the motivation from the empirical finding that network knowledge is local is
shared with Li and Tan (2020). They study a model of misspecified learning, where each
individual believes that the underlying network is only a subgraph including her neighbors
and herself. In contrast, I take a robustness approach, constructing learning rules that work
well when individuals acknowledge their uncertainty about the environment.

The rest of the paper is structured as follows. Section 2 describes the model. Section
3 defines empiricist learning rules and proves their asymptotic individual optimality in
stationary environments (Proposition 1). Section 4 shows the convergence result (Theorem
1) and sketches out directions for extensions. Section 5 shows strong efficiency on clique
trees (Theorem 2). Section 6 explores the challenges to achieving efficiency of information
aggregation in general circumstances, including a formal converse to the positive efficiency

result (Theorem 3). Section 7 reviews related literature and Section 8 concludes.

2 Model

My model features asynchronous arrivals of private signals and asynchronous actions within
each period, when a new state of the world is drawn. In each period, an individual’s obser-
vation updates both her belief about the underlying environment and her belief about the
current state, the latter of which determines her action. This section focuses on clarifying

the elements of an environment.



An environment consists of an objective environment, described in Subsection 2.1, and
a profile of belief-updating rules and decision rules, described in Subsection 2.3. That is,
belief-updating rules and decision rules are treated as primitives of the learning environ-
ment rather than strategic choices. Subsection 2.2 provides details on the timing of actions

within each period. Subsection 2.4 defines convergence of beliefs and of play.

2.1 Objective environment

Fix an undirected network G. Without loss of generality, assume that GG is connected.
Denote by N = {1,...,n} the set of individuals on this network and by N; the set of
neighbors of individual .

There are infinitely many periods, each of which has R rounds. In period ¢, a state of
the world 6, is drawn from {—1,1} with Pr(f;, = —1) = Pr(f, = 1) = 1/2. Denote
by 514, ..., Sn the private signals of individuals 1,...,n in period ¢. Assume that these
private signals are independent conditional on the realized state of the world, with the
private signal of each individual ¢ having conditional distribution Pr(s;; = 6;|6,) = ¢; for
all 9, € {—1,1}. Assume that ¢; > 1/2 so that private signals are informative. Refer
to g; as the quality of ¢’s private signal. Private signals arrive to individuals at different
rounds according to a signal-timing vector 7, = (7y4, ..., T,,;) drawn from some distribution
H € A({1,...,R,00}"), independently over time and independently of the state of the
world; 7;; = r € {1,..., R} means that in period ¢ a private signal arrives to 4 in round r
and 7;; = oo means that no private signal is generated for ¢ that period. Assume that H has
full support and the arrivals of private signals are independent across individuals, that is,
H = H, x ... x H, where H; € A({1,..., R,o00}) for each i.

In each period ¢, individual i decides on an action a; € {—1,1}.> In the context of
social platforms, an action could be a post expressing one’s view on the topic of that period
and individuals want to express the correct view. Assume that an individual takes action
at the end of the round in which she first receives some private signal or observes some
actions of her neighbors (or both). Moreover, it takes one round for one’s action to be
observable to her neighbors. Assume further that once an individual chooses an action in a

period, she does not pay attention to any private signal or actions chosen by her neighbors

2For M C N, write a ¢ for the profile of actions chosen in period ¢ by individuals in M. Write a; for
the profile of actions of all individuals in period .



in later rounds of that period. As in the social learning literature, this assumption prevents
the same piece of information spreading from one individual to her neighbors and then
spreading back to her.?

A network G, a distribution H of the signal-timing vector and a vector (g;);c y of signal

qualities constitute an objective environment.

2.2 Timeline in each period

For a given network G, the diffusion of information and timing of actions in each period
t are determined solely by the realized signal-timing vector 7;. This vector induces for
each i an action round r;(7;) and an observation set M;(1;). At the beginning of round
ri(7¢), i first receives a private signal or observes the actions of some neighbors of hers.
The observation set M;(7;) is the set of individuals whom ¢ hears from in round 7;(7;),
including herself if she has received a private signal. At the end of round r;(7;), individual
1 chooses an action.

Let [(i, 7) denote the distance between individuals ¢ and j on the network. Given signal-

timing vector 7, individual ¢’s action round is

ri(7) = min {%I{Tj + 130, 9)}, R} .

This reflects the assumption that each individual reacts to the first piece of information
she receives and that it takes one round for information to travel across one link. If an
individual does not receive any information by the last round, she will take action in the

last round. The observation set of 7 is defined by
Mi(r) = (N; 0 {j :rj(r) = ri(7) — 1}) U {a}Hn0=rd,

Figure 1 illustrates how a signal-timing vector determines the diffusion of informa-
tion and timing of actions on one particular network. In the left panel is the undirected
network and in the right panel is the diffusion of information on this network for 7 =

(1,3,2,5,2). In the latter, an arrow from j € N; to ¢ means that ¢ observes j’s action

31f feedback and updates of actions were instead allowed, then an individual might benefit from distorting
her initial decision in ways that improve the quality of information she would receive before making the final
decision.



and an arrow from 7 to herself means that she receives her private signal. The action
rounds are 71 (7) = 1,79(7) = r3(7) = r5(7) = 2,74(7) = 3 and the observation sets are
My(m) = {1}, Ma(7) = {1}, M3(1) = {1,3}, My(7) = {2,5}, M5(7) = {5}. In round
1, individual 1 observes her private signal and takes action. Her action takes one round to
reach individuals 2 and 3, the latter of which receives a private signal in round 2. In round
2, individual 2 chooses an action based only on individual 1’s action while individual 3
aggregates both the action of individual 1 and his private signal. Individual 5 observes her
private signal in round 2 and chooses an action. In round 3, individual 4 sees the actions of

both individuals 2 and 5 and chooses an action before seeing any private signal.

Figure 1: A realized diffusion with diffusion vector 7 = (1, 3,2, 5, 2)
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2.3 Belief-updating rules and decision rules

Recall that each individual is assumed to react to the first piece of information she receives
in a period and not to pay attention to information arriving after she has chosen an action
that period. Thus, an individual’s observation at the beginning of her action round in period
t includes the actions of some subset of her neighbors and her private signal, and the action
round itself. Denote by h;; what ¢ observes in period ¢ before choosing an action. That is,
hit = (Qng(m\fiy 0> Sit> Ti(7e)) if ¢ € My(7y) and hyy = (@sy(r) 0, 73(72)) if @ & M;(73). Her
observation in period ¢ after taking action that period, denoted by hi, further includes the
action taken. Let h! = (g1, ..., hiy).

A belief-updating rule of i is a function f3; : (h™% hy) — b € A({—1,1}) that
keeps track of 7’s belief about the current state of the world at the beginning of her action



round each period. A stationary belief-updating rule (3; : hy — b; € A({—1,1}) forms
individual ¢’s belief about the current state of the world only from her current observation.

A decision rule is a time-dependent function o; : (b;,t) — d; € A({—1,1}) that
maps i’s belief b, € A({—1, 1}) about the current state of the world to a distribution over
feasible actions. A stationary decision rule is a time-independent function ; : b; —
d; € A({—1,1}). A natural candidate for consideration is the stationary decision rule that
maximizes the subjective probability that i’s action matches the current state of the world

and breaks ties equally between the two states,

a;(bi) =14 0.4 if b;(—1) > 1/2,
(1/2,1/2) otherwise.

Here ¢ is the Dirac measure. Notice that this decision rule has a discontinuity at the point
where belief splits exactly (1/2,1/2).

To ensure that convergence of beliefs leads to convergence of play, I consider smooth
decision rules, which are technical modifications of 7;. A decision rule o, is a smooth

decision rule if

ol (b, 1)(0) = xpbi(6)/ i) .
' exp(b;(0)/mit) + exp(bi(—0)/nit)

for some sequence 7 = (7;);, where n; — 0 ast — oo, and for all § € {—1,1}.
That is, o, can be derived as the choice probability of a random utility model where the
mean utility is the subjective belief and the logistic error decays with time. Since o
converges to o, smooth decision rules asymptotically optimize the probability of matching
an individual’s action to the true state of the world if the beliefs are correct. While letting
the smoothing parameter decay to zero with time is not important for convergence, this
approach allows cleaner statements on asymptotic efficiency than the alternative of keeping
a constant smoothing parameter.*

An environment is a tuple E = (G, H, (¢;)ien, (0i);cn » (03)icn) that combines an ob-

jective environment, with a profile of belief updating rules and decision rules.

4Smooth decision rules can also be motivated by the behavior of an individual with smooth ambiguity
aversion who faces a decision problem repeatedly and whose uncertainty about the problem gets resolved
over time. Such an individual tends to hedge, but her hedging tendency goes away with time. Battigalli et al.
(2019) generate decaying hedging tendency from Bayesian learners with smooth ambiguity aversion. For the
characterization of smooth ambiguity aversion, see Klibanoff et al. (2005).
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2.4 Notions of convergence

To separate the stochasticity of play induced by the objective environment from the impli-
cations of different belief-updating rules and decision rules, I define the notion of system
states. Fix an objective environment (G, H, (¢;);en). For each period ¢, let {; = ((it)ien
be a vector of independent standard uniform random variables, which are used instrumen-
tally to capture the randomness in actions induced by mixing decisions. Define the system
state at time t as the tuple w; = (74, 8¢, (), which includes a signal-timing vector, a vector
of private signals, and a vector of instrumental draws. Note that system states are drawn
independently over time from a stationary distribution, so any nonstationarity in the envi-
ronment must be induced by the belief-updating rules and decision rules.

For a given objective environment, a profile (/3;);cny of belief-updating rules and a
profile (0;);en of decision rules define a history-dependent function ¢ : (wy, ht=1, t) —
{—1,1}" that, for each given history ht=1, maps the current system state to a profile of
actions. Refer to such function as a function of play and each component function v; :
(wy, A'=1,t) — {—1,1} as a function of i’s play. Take a period t and a history h'~!, the

action profile a; = th(wy, ™1, t) is constructed as following:

e Let ro = min{ry, .., 7¢ }. For all i such that 7;; = 1o, hyy = (s4,70). Set a;; = —1if
i < ai(ﬂi(ﬁﬁ’l, hit))(—1), otherwise set a;; = 1.

e Inductively, forr € {ro+1,..., R} and i such thatr;(7;) = 7, hit = (arr,(m)\fi} > Sits T)
if 7y = rand by = (angy(r) e, 7) if 73 > 7. Setay = —1if G < 03(Bi(AE ha)) (1),

otherwise set a;; = 1.

A stationary function of play is a history-independent function ¢ : w + a € {—1,1}",
mapping each system state to a profile of actions.

Write 6' = (04, ..., 6;) for the sequence of states of the world up to ¢ and write w' =
(w1, ...,w;) for the sequence of system states up to ¢. The objective environment of an
environment £ defines a probability space on the set of all (§>°,w>). Denote by Pr” the
corresponding probability measure.

An important question when studying a learning rule is whether, or under which con-
ditions, it leads to convergence of beliefs and of play. This paper focuses on almost sure

convergence with respect to the true underlying environment.
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Definition 1. (Convergence) Fix an environment E = (G, H, (¢;)ien, (Bi)ien, (0:)ien)- A
belief-updating rule f3; converges to a stationary belief-updating rule [3; if

pr? <tlim 18R, i) — Bi(har)|| = o) ~ 1.
— 00
The induced function of play 1 converges to a stationary function of play 1 if

P ((lim o, B 1) = )| = 0) = 1.

3 Empiricist learning rules

This section builds the class of empiricist learning rules and proves their desirable proper-
ties in stationary environments. Subsection 3.1 defines learning rules. Subsection 3.2 de-
rives key properties of stationary environments. Subsection 3.3 defines empiricist learning
rules and shows that in stationary environments, empiricist learning rules ensure asymp-

totic learning of relevant elements of the environment and asymptotic individual optimality.

3.1 Learning rules

Over time, individuals update their beliefs about the environment based on what they have
observed. To capture the idea that individuals have minimal knowledge of the underly-
ing environment, I assume that each individual is certain only about the set of her neigh-
bors, the quality of her private signal, her own belief-updating rule and decision rule. For
each i, denote by & C & the set of environments that are consistent with the true tuple

(Ni, qi, Bi, 0;) of the underlying environment.

Definition 2. (Learning rules) A learning rule T'; : (B!, hyy) — p € A(E;) of individual
1 is a map from i’s histories to i’s beliefs over environments she deems feasible. Belief-

updating rule 3; is founded by learning rule T; if for all history (illfl, hi) and all 6,

8. a)6) = [ Prf(halte = 0.07")
N peg; \ Prf(hy|6, = 0, h17Y) + Prf(hy|0, = —60, hi™Y)

) dL; (WY hyy) (E).
Note that inside the integral is the likelihood that the current state is € conditional on
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1 observing (ﬁf‘l, hit) in environment F. Intuitively, with a learning rule, an individual
updates her belief about the underlying environment and then updates her belief about the

current state using Bayes’ rule.

3.2 Local models for stationary environments

In stationary environments, the key object of learning simplifies substantially. It reduces to
a collection of conditional distributions of observations at each pair of an observation set
and an action round. This collection is referred to as a local model. I then show that there is
a one-to-one map between an individual’s local model and the unconditional distribution of

her observation, further reducing the object of learning to this unconditional distribution.

Definition 3. (Stationary environments) An environment (G, H, (¢;)ien, (5i)ien, (0)ien)
is stationary for individual i if for all j # 1, there exists a stationary belief-updating rule ﬁ_j
such that Bj(ﬁé-’l, hji) = B;(hj.) for all history (ﬁ;’l, h;i), and a stationary decision rule
a; such that o;(b;,t) = ;(b;) for all t and b; € A({—1,1}). That is, the belief-updating
rules of other individuals depend only on their current observations and their decision

rules do not depend on time.

Denote by &, C &, the set of all environments stationary for 7. It holds for all £/ € &,
histories (h!™*, h;;) and 6 that

Pr¥ (|0, = 0, ht™") = Pr¥(hy |0, = 6).

Thus, the likelihood that the current state is 6 conditional on histories (ﬁf‘l, hit) is

PrE(h,-t|9t =0)
Pr¥(hy|0, = ) + Prf(hy|0, = —6)
B Pr¥(hy|0, = 0, M;(1,) = My, ri(1) = 7)
Pr¥(hy|0; = 0, M;(1,) = My, ri(1) = r) + Pr¥(hy|0, = —0, My(1) = My, ri(1) = 1)’

where M; C N; U {i} is i’s observation set and 7 is ’s action round when she observes
h;t. The equality follows because the signal-timing vector is independent of the state of
the world. The above equation means that for ¢ to form her belief about the current state
of the world, she only need to specify her belief about the stationary distribution of her

observation conditional on the state of the world at each observation set and action round.
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For each stationary environment £ € &;, each nonempty set M; C Nj, and each r €
{2,..., R}, denote by fF(ayy,,s;|0, M; U {i},r) the stationary probability that i observes
(anr,, s;) given observation set M; U {i} and action round r, conditional on the state of the
world being . Similarly, write fZ (a0, M;,r) for the probability that i observes ayy,
given observation set M/; and action round 7, conditional on the state of the world being 6.
Refer to the tuple f7 = (fF (.10, M; U {i},r), f[F(10, Mi,7))oe{—11} MCNyref2,.. R} @S ©S
local model in E. Appendix A.1 shows that f is well defined.’

With some abuse of notation, write

sz( .}? 7“) = fiE(CLMm 1‘07 Mz U {2}77') + fiE(aMia _1‘97 Mz U {Z},T)

for the conditional probability that ¢ observes aj;, from her neighbors when she receives
some private signal. The following lemma proves two properties that hold in all stationary

learning environments.
Lemma 1. Take any i € N and any E € &;. The following properties hold:

1) For every nonempty M; C N;, v € {2,..., R} and ay;, € {—1, 1}Mil,

fE(an,, =1 M; U {it,r)\  [(PrP(s;=—1,0=—-1) Prf(s;=-1,0=1)
FElap, M U{i},r) ) \ Prf(s;=1,6=—1) Prf(s;=1,0=1)

X«% ——1MUh}v
£E( )

}
Furthermore, matrix (Pr* (s;, 0))s,.0c{-1,1} is full rank.

2) For every nonempty set M; C N;,r € {2,.., R} and (ay,, s;) € {—1, 1}Mil+1]

{ﬂ( )= £ 17
FE(ans,, si0, M; U {i},r) = Pr2(s,00) fE (anr, |0, M; U {3}, 7).

Iz

Proof sketch. The second equation in part 2 holds because private signals are independent

of the diffusion process and across individuals, conditional on the state of the world. This

>Note also that the conditional distribution of an individual’s observation when she receives only her
private signal is known by her. For ease of notation, it is thus excluded from her local model.
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implies the system of linear equations in part 1. Moreover, matrix (Pr”(s;, 0))s,.0e{-1,1} is
full rank because ¢’s private signal is informative. For the first equation in part 2, notice
that the arrivals of private signals are independent across individuals. This implies that
conditional on ¢ acting later than her neighbors, the way information has diffused to her
neighbors is not affected by whether ¢ receives her private signal. See Appendix A.2 for
the details. L

Since ¢ knows the quality of her informative private signal, part 1 of Lemma 1 implies
that the conditional distribution of the neighbor actions observed by ¢+ when she receives a
private signal can be derived from the unconditional distribution of her observation when
she receives a private signal. Then part 2 of the lemma completes a one-to-one mapping
between ¢’s local model and the tuple of unconditional distributions of z’s observation when

she receives a private signal.

Corollary 1. For every E and E' € &, if the respective local models fF and fF' of
individual i satisfy that fF(.|M;U{i},r) = fF'((|M;U{i}, r) for all nonempty set M; C N;
andr € {2,..., R}, then fF = fF'.

3.3 Empiricist learning rules

Empiricist learning rules build on two ideas. First, if an individual believes that her learn-
ing environment is stationary, she does not need to learn the underlying environment but
only the local model it induces. Second, this local model can be inferred from the uncon-
ditional distribution of her observation, which in turn could be learned from its empirical
counterpart.

Learning about a stationary environment is connected to learning about a local model.
Denote by F; = {fF forsome E € &} the set of all local models induced by feasible
environments that are stationary to ¢. Let I'; be ¢’s learning rule. If Fi(ﬁf_l, hit) € A((‘:’i)
for all histories (ﬁﬁfl, hi), then T'; induces a learning rule over local models, ~y; : hi —
p € A(F;), that satisfies for all F; C F;,

() (F) = / L{fF € F}dT (R ha)(E).

EEgi

Notice that to update her belief about the true local model, individual 7 only need to keep
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track of past observed actions of her neighbors and not her own. The reason is that in
stationary environments, an individual’s own action has no influence on the actions of
other individuals in future periods, and thus does not matter for her learning.

Let (3; be the belief-updating rule founded by such I';. It follows that for all histories
(h'™!, hy) and state of the world 6,

Bi(hi" hir)(0) = /

fi€Fi

filans,, 840, M; U {i},r) e
(fi(aM“ 3i|97 M; U {i},?“) + fi(aM“ Si| —0,M; U {Z},T’)) d%(hi)(fz)

if hyy = (ap,, si, 1), and

fi(aMi 97Mz’>7")
0, M;,r) + filanm,

Bi(h hi) (6) = /

Ji€F; (fi(aMi —0, Mi,r)) d%(hz)(fz)

if hyy = (an,, 7).

Next is to connect an individual’s learning of her local model to the empirical distri-
bution of her observation. Denote by f;(.|M; U {i},r)(h!) the empirical distribution of 4’s
observation conditional on observation set M; U {i} and action round r given history h!.
Formally, for each nonempty set M; C N;,r € {2,..., R} and (ay,, s;) € {—1, 1}Mil+1
let

Zi’:l 1{hit’ = (CLM“ Si, T)}
Zi’:l Z(agw_,s;)e{_Ll}\MiIH Hhy = (@, si,7)}

fi(a’Mw Si’Mi U {Z}a T)(hf) =

if the denominator is positive, otherwise set f;(ayy,, s;|M; U {i},r)(ht) = 1/21Mil+1 For
every € > 0 and history h!, define Ff(h!) C F; as the set of all local models f; such that

for all nonempty set M; C N; and r € {2, ..., R},
£ (1M U {iY ) = fi([M; U {i},r) (B < e.

That is, Ff(h!) is the set of local models that induce unconditional distributions within
e-distance from their empirical counterparts.

Along every history, empiricist learning rules put probability one on stationary en-
vironments, so learning about the underlying environment reduces to learning about the

local model. Furthermore, empiricist learning rules asymptotically put probability one on
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local models consistent with the empirical distribution of individuals’ observations.

Definition 4. (Empiricist learning rules) Learning rule T; : (k™' hy) — p € A(E;) is an

empiricist learning rule if
1) for all history (ht™1, hy), Ti(hi™2, hi) € A(E)),

2) and the map v; : ht — p € A(F;) induced by T; satisfies that for all ¢ > 0 and h,
i (RO (FE(hY)) =
lim 5, () (F (h)) = 1.

A belief-updating rule is empiricist if it is founded by an empiricist learning rule.

Empiricist learning rules have a high-level connection with the literature on fictitious
play, in particular, the concept of asymptotically empirical assessment rules by Fudenberg
and Kreps (1993). In a fictitious play, each player in a repeated game believes that their
opponents employ stationary mixed strategies. Asymptotically empirical assessment rules
require that a player’s assessment of others’ mixed strategies asymptotically agrees with
their empirical distribution. Analogously, in my model, individuals that use empiricist
learning rules believe that their environments are stationary and that they should eventually
take the empirical distribution of observed play as the true stationary play. The difference
is that in my model, the distribution of play is not the final object of learning, but how it
correlates with the unobserved state of the world. To learn the latter, empiricist learning
rules exploit Lemma 1, which connects the distribution of observed neighbors’ actions
unconditional on the state of the world to that conditional on the state of the world.

Another intuition that carries analogously from fictitious play to my model is that ficti-
tious play would be asymptotically optimal if the opponents indeed used stationary strate-
gies. The reason is that by the Strong Law of Large Numbers, the empirical distribution
of a stationary random variable converges to its true stationary distribution almost surely.
An individual that asymptotically believed in the empirical distribution would, therefore,
asymptotically learn the true stationary distribution of opponents’ play and respond opti-
mally. In my model, when the underlying learning environment is stationary, empiricist
learning rules ensure asymptotic learning of the true local model and thus, asymptotic op-
timality. More specifically, part 2 of the following proposition says that conditional on

sufficiently long histories, a pair of an empiricist learning rule and a smooth decision rule
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approximately optimizes the probability that an individual’s action matches the true state
of the world in the current period and in all future periods. Note that in an environment sta-
tionary to ¢, the distribution over histories h;° depends only on the objective environment
and the profile of belief-updating rules and decision rules of individuals other than . Since

asymptotic learning holds at almost every history 2:°, so does asymptotic optimality.

Proposition 1. Take any i € N,E € &; and let fF be i’s local model induced by E.
Suppose that i adopts an empiricist learning rule 1';, which induces learning rule ~; of

local models and empiricist belief-updating rule ;. The following hold:

1) (Asymptotic Learning) For all € > 0,
Pr (tlggo vi(hi) (B (7)) 1) L,

where B (fF) = {f; € F; : || fi — fF|| < €} is the e-ball around fF.

2) (Asymptotic Optimality) For all belief-updating rule [3;, decision rule o, and ¢ > 0,

Pet (3T BE (o} (BB, 1)) (00) 1)
> EX(ol(B(h " ha) 0 |RE) — e > T) =1,

where EF is the expectation with respect to probability measure Pr”.

Proof sketch. In every stationary environment, it holds by the Strong Law of Large
Numbers that the empirical distribution of an individual’s observation converges to the true
unconditional distribution almost surely. Empiricist learning rules, which asymptotically
put probability one on local models consistent with the empirical distribution of obser-
vations, thus asymptotically put probability one on local models consistent with the true
unconditional distribution. By Corollary 1, it follows that beliefs under empiricist learning
rules asymptotically concentrate on the true local model. Part 2 follows from part 1 and

the asymptotic optimality of smooth decision rules. See Appendix A.3 for the details. []
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4 Convergence of learning

Section 3 showed that empiricist learning rules are individually asymptotically optimal in
stationary environments. But how do they perform in nonstationary environments, where
individuals actively learn? This section shows the first main theorem of my paper: conver-
gence of beliefs and of play is achieved in every environment where all individuals adopt
empiricist learning rules and smooth decision rules. Subsection 4.1 sketches the proof of
this theorem. Subsection 4.2 discusses how the convergence result can be extended to more

general settings.

4.1 Convergence on all networks

When all individuals adopt empiricist learning rules and smooth decision rules, individ-
uals’ play converges to a stationary play, where only the current observation affects an
individual’s belief about the current state of the world. Moreover, each individual asymp-

totically learns the true local model induced by the long-run play.

Theorem 1. Fix any environment E = (G, H, (¢;)ien, (Bi)ien, (0))ien) where for each
n

1, B; is an empiricist belief-updating rule and o, is a smooth decision rule. Let y; be

individual i’s learning rule over local models and 1) be the function of play induced by E.
The following hold.

1) Foreachi € N, (3; converges to some stationary belief-updating rule ;.
2) 1) converges to some stationary function of play 1*.

3) Let f; denote the local model induced by 1)*. Then for eachi € N, ; asymptotically
learns f;. That is, for every e-ball B(f;) around f;,

Pr (Tim ~(ht) (B(fi)) = 1) = 1.

Moreover, 1" is the symmetric and individually optimal stationary function of play that
is uniquely defined by the objective environment (G, H, (¢;)icn). For each i, B} gives the
correct likelihoods of the state of the world at each current observation, according to local

model f;.
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Proof sketch. The proof of parts 1 and 2 proceeds inductively on action rounds, showing

for each r € {1,..., R} that for every individual 7,
Pr? (lim 1{ri(n) = 18R i) = B (hao)ll = 0) =1
—00

and
Pr (Jim 1{ry(r) = rHlos(wr, bt ) = (@)l = 0) = 1.

Consider the base case with » = 1 and take an arbitrary ¢. For every 7, such that
ri(1¢) = 1, it must hold that 7;; = 1 and M;(7;) = {i}. That is, ¢ must receive her private
signal in round 1 and choose an action using only her private signal. For all w = (7, s, ()

such that r;(7) = 1, construct

B (s, 1)(0) = ¢ = (1 — )" # forall @ € {—1,1}, and ¥ (w) = s..

Because individual ¢ knows the quality of her private signal, Bi(izf*l, hit) = PB;(hy) for
all observation h;; = (s;,1). Moreover, since ¢; > 1/2, her optimal action at such h;; is
to choose a;; = s;;. It then follows from the definition of smooth decision rules that 1);
asymptotically puts probability one on the action that agrees with her private signal when
she receives only her private signal. This completes the proof of the base case.

The inductive step from r to r + 1 relies on showing that as an individual’s environ-
ment becomes approximately stationary, her belief converges and thus so does her play.
Empiricist learning rules ensure convergence of learning of approximately stationary en-
vironments, and smooth decision rules ensure that convergence of beliefs leads to conver-
gence of play. This argument is formalized by Lemma A2 in Appendix A.4. Finally, the
proof of part 3 extends the proof of part 1 of Proposition 1 to approximately stationary

environments. ]

Theorem 1 demonstrates a form of learning externalities: if an individual learns the
informativeness of her neighbors’ actions well, then the informativeness of her action to
other neighbors will be learned well by these other neighbors. As a general pattern of
learning, convergence spreads from early receivers of news to late receivers of news. This
pattern is inherent in the inductive construction of the profile of stationary belief-updating

rules (3} )icn and the stationary function of play ¢* (see Appendix A.4).
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While the way information diffuses across rounds suggests a natural order for an induc-
tive argument, the inductive step relies crucially on the fact that empiricist learning rules
do not allow (mis)learning in later rounds to contaminate learning in earlier rounds. The
latter holds because under empiricist learning rules, learning in a round depends only on
the empirical frequency of neighbors’ actions observed in that round, which in turn de-
pends only on others’ learning in earlier rounds. Note that neighbors’ play across periods
is in fact linked through the fundamentals of the environment, such as the network structure
and the informativeness of private signals. By forgoing information from such linkages,
empiricist learning rules may slow down learning but they avoid potential failures due to
misspecification.

That convergence of play under empiricist learning rules holds in all networks has
important implications. First, it lends support to the assumption of empiricist learning
rules that individuals believe in stationary learning environments. Second and most im-
portantly, it allows the long-run performance of empiricist learning rules to be evaluated at
the stationary play to which play under empiricist learning rules and smooth decision rules
converges. This stationary play is the focus of Sections 5 and 6.

Another implication of the general convergence result is that my model can provide a
learning foundation for the common knowledge assumptions in a direct analysis of the one-
period game. Consider the one-period game of my model where the objective environment
is common knowledge and each individual aims to maximize the probability that her action
matches the true state of the world. In this game, the unique Perfect Bayesian equilibrium
that breaks ties equally between the two states of the world induces the same stationary
play as the long-run play in my model when individuals use empiricist learning rules and

smooth decision rules.

4.2 Convergence in more general settings

In fact, the convergence result can be generalized to richer settings.

First, the objective environment can allow any finite number of states of the world and
general diffusion processes that are not necessarily tied to a permanent underlying network.
The crucial assumption to maintain is the stationarity of the objective environment. This
assumption ensures that at each inductive step, the local environment becomes approxi-

mately stationary as others’ play converges.
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Second, individuals can have multiple signals with arbitrary correlation, as long as
each individual has a private signal that satisfies independence and informativeness. Here
independence means that the arrival and realization of this private signal is independent of
other components of the individual’s observation set. This allows for a mapping between
the unconditional distribution of an individual’s observation when she receives this private
signal and the corresponding conditional distributions, analogous to property 1 of Lemma
1. The independence of this private signal also allows a direct connection between the
conditional distribution of an individual’s observation when she receives and when she
does not receive this signal, analogous to property 2 of Lemma 1. If the private signal is
informative, these two mappings result in a one-to-one mapping between the unconditional
distribution of one’s observation and her local model. Here, informativeness means that the
matrix (Pr”(s;, 0))s, ¢ has full column rank.

Finally, as in the main setting, individuals that use empiricist learning rules believe in
stationary environments and asymptotically believe in the empirical distribution of their ob-
servation. Furthermore, they use asymptotically optimal decision rules that are smoothed
to ensure that convergence of beliefs leads to convergence of play. As in the main setting,
one way of smoothing is to derive these rules from the choice probabilities of a random

utility model that takes subjective beliefs as mean utilities and has decaying logistic errors.

S Strong efficiency on clique trees

This section builds on the convergence result of the previous section to prove a positive
efficiency result: on clique trees, the long-run play induced by empiricist learning rules
and smooth decision rules achieves strong efficiency within the class of symmetric feasi-
ble stationary plays. That is, no other symmetric feasible stationary play can make some

individual strictly better off, even at the expense of some other individuals.

Definition 5. (Strong efficiency) Fix an objective environment, which induces probability

measure Pr on (0, w). A stationary function of play 1) is said to dominate another station-

ary function of play i if for every i,

Pr(vi(w) = 0) > Pr(¢j(w) = ).
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A stationary function of play is strongly efficient within a class of stationary functions of

play if it belongs to that class and it dominates all stationary functions of play in that class.

Subsection 5.1 defines the class of symmetric feasible stationary functions of play.
Subsection 5.2 derives properties of clique trees that are key to the efficiency result, which

is shown in Subsection 5.3.

5.1 Symmetric feasible stationary functions of play

Recall from Theorem 1 that if all individuals adopt empiricist learning rules and smooth
decision rules, the induced play converges to a stationary function of play ¢)* that is well-
defined by the underlying objective environment. More specifically, ©* is associated with
the profile (3} );cn of stationary belief-updating rules that correctly learn the local environ-
ments and the profile (¢} );cy of optimal stationary decision rules that treat the two states
symmetrically.

For efficiency comparison, it is only meaningful to compare v* to stationary functions
of play that respect local observability. That is, an individual’s play can only condition on

her observation.

Definition 6. (Feasibility) A stationary function of play 1) is feasible if and only if it can be
induced by a profile of stationary belief-updating rules (3;);cn and a profile of stationary

decision rules (7;)ien-

Moreover, to study environments without biases towards either state of the world, one
can focus on the class of symmetric stationary functions of play. Since the objective envi-
ronment is symmetric with respect to the state of the world, play should also be symmetric
with respect to the state of the world if individuals care equally about false positives and
false negatives.

A stationary belief-updating rule 3; is symmetric if for every observation (ayy,, s;,7),

ﬁi(a’Mﬂ Siy T) (9) = ﬁi(_aMw —Sis T)(_e)v

and for every observation (ayy,, ) of 4,

Bian;, r)(0) = Bi(—an;, r)(=0).
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A stationary decision rule ; is symmetric if forall b € A({—1,1}),5,(1 —b) = 1 —5;(b).
That is, a symmetric belief-updating rule flips one’s belief between the two states of the
world if the observed actions and private signal flip signs; a symmetric decision rule flips

the probability of each action when one’s belief flips between the two states of the world.

Definition 7. (Symmetry) A feasible stationary function of play 1) is symmetric if

(7, 8,() = —u(1,—s,1— ()

for all T, s and (. Equivalently, 1 is symmetric if and only if it can be induced by some
profile (3;)icn of symmetric belief-updating rules and some profile (7;)icn of symmetric

stationary decision rules.®

5.2 Clique trees

The main efficiency theorem of this paper establishes that individuals on clique trees have
their interests perfectly aligned. This subsection describes clique trees and the two proper-

ties of clique trees that are sufficient for strong efficiency.

Definition 8. (Clique trees) A network G is a clique tree if any two individuals i and j that

belong to the same cycle are linked.

Essentially, clique trees are extensions of trees, where a node can be replaced by a
clique, that is, a set of fully linked individuals. Qualitatively, clique trees are stylized
examples of networks of different groups with dense within-links and sparse between-
links.

Recall that information travels from one individual to another individual only through
the shortest paths connecting them. Thus, every feasible stationary function of play ) must
satisfy that for every 4, 1; depends on the system state w only through:

o the signal-timing vector 7,
e the private signal s; of each j € argmin, y{7; + I(k,7)},

e the instrumental draws (; of each j € argmingn{ry(7) +I(k,7)} and ;.

The equivalence relation is shown in Appendix A.5.
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This means that the role of the underlying network in information diffusion is exactly
summarized by the structure it imposes on the shortest paths connecting individuals. Let
IFp; ={k € N :l(k,j) +1(j,i) = l(k,7)} denote the set of individuals whose shortest
connecting paths to ¢ go through ;7. This notion is useful for establishing two technical
properties of clique trees. Note that on geodetic networks, any two individuals are con-

nected through a unique shortest path, and that clique trees are geodetic.
Lemma 2. Take any connected network G.

1) If G is geodetic then for all i € N, {I1F}\;};cn, is a partition of N\{i}.

2) If Gisaclique tree then foralli € N, j € Nyand k € N;\(N;U{i}), [F; C IFj;.
Proof. See Appendix A.6. U

The above lemma establishes two technical properties of clique trees. First, an in-
dividual’s neighbors act as separate channels through which signals and actions of other
individuals can influence her. Second, sources that are not jointly shared between two
neighbors 7 and j and influence j must also influence ¢ exactly through j. In Lemma 3 and
Lemma 4, these two technical properties of clique trees are translated into two properties
crucial for establishing strong efficiency. First, the separation of sources that can influ-
ence an individual is exploited to show that for every individual on a geodetic network, the
observed actions of her neighbors are always independent conditional on the state of the
world. As a result, the overall informativeness of these neighbors’ actions is increasing in
the informativeness of each of their actions, captured by a sufficient statistic under sym-
metry of play. Then, the relation between the set of those individuals that can influence an
individual and the set of those influencing her neighbors is shown to align neighbors’ in-
terests. That is, an individual maximizes the informativeness of her action to her neighbors
exactly by optimally aggregating information at each of her conditioning sets.

Lemma 3 establishes the conditional independence of observed neighbors’ actions. The
proof involves two steps, each of which exploits part 1 of Lemma 2. The first step further
uses the independence of the realizations of private signals to show that the actions of
1’s neighbors are independent conditional on the state of the world and the signal-timing
vector. The second step further uses the independence of signal arrivals to show that the
realized path of information that reaches an individual through each neighbor of hers is

independent across these neighbors.
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Lemma 3. (Conditional independence of observed neighbors’ actions) Fix an objective
environment (G, H, (q;)ien) where G is geodetic and a feasible stationary function of play
1. For every i, nonempty set M; C N;U {i} andr € {2, ..., R},

Pr(vas g (w)|0, My(1) = My, 7i(7 = [ Pr@;w)o, Mi(r) = M;,ri(r) =r).

JEM;\{i}

Proof. See Appendix A.7. 0

An implication of Lemma 3 together with symmetry is that for each conditioning set of
an individual, what matters for her prediction is a set of sufficient statistics, each capturing
the quality of each source that she hears from. Specifically, fix an objective environment
where the network is a clique tree and consider a symmetric feasible stationary function of
play 1. Take an individual 7 with observation set M/; C N; and action round r € {2, ..., R}.
For each j € M;, define the quality of j’s signal given ¢’s conditioning set being (M, )
by

4" = Pr(iy(w) = =11 = ~1, Mi(r) = My, ri(r) =)
= Pr(¢;(w) = 1|10 = 1, My(1) = M, ri(1) = 7).
The second equality follows from the symmetry of ¢/ and the assumption that Pr(s|0) =

Pr(—s| — 0) for all s € {—1,1}". Then the likelihood ratio of the state of the world

conditional on 7 observing a,,, in round r is

~M;.,r {a;=1}-1{a;=-1}
£0 =) _ 1y (2
L(0 = —1lap;,r) Mo '

jem \1 — @

When individual ¢ also observes her private signal, so i’s observation set is M; U {i}, the

likelihood ratio becomes

_ o ~M:.r Ha;j=1}-1{a;=-1
L(e - ]‘|a’M17 Si) 771) _ ( qz ) 1{51'—1}—1{317 1} H quzy { } { }
£(6 = _1|a’M¢78iar> l—g e, 1 —q&[i’r '

J

The optimal predictor for individual ¢ is to choose a; = 1 when the likelihood ratio is

larger than 1 and to choose a; = —1 otherwise. Given that the different sources that ¢ hears
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from are conditionally independent, the probability that her optimal predictor matches the
state of the world is weakly increasing in the probability that each source matches the state
of the world. The reason is that were she to have sources of higher quality, she could always
distort their quality downward by adding symmetric independent noise and use the optimal
predictor of the lower quality sources. Note that under 1/* induced in the long run by all
individuals using empiricist learning rules and smooth decision rules, each individual uses
the optimal predictor at each of her conditioning sets. The next lemma shows that on clique
trees, when a neighbor j of ¢ optimizes the probability that her action matches the state of
the world, she simultaneously maximizes the informativeness of her action to 7. This is an

important property for selfish learning to be socially efficient.

Lemma 4. (Local alignment of interests) Fix an objective environment (G, H, (¢;)ien)
where G is a clique tree. Let 1) be a symmetric feasible stationary function of play of this
objective environment. Take an individual i, a nonempty set M; C N, and an action round

r €42,...,R}. Forevery j € M,

g = Z war, x Pr(;(w) = 0|0, My(1) = Mj,ri(1) =r — 1),
M C(N;\(N:U{i}))u{s}

where each wy;, > 0 depends only on G and H, and Z]ijg(Nj\(NiU{i}))U{j} wyy; = 1.
Proof. See Appendix A.8. U

The proof of this lemma relies on part 2 of Lemma 2, which ensures that any neighbor
j of 7, given her observation set and action round, can distinguish between diffusions that
affect her but not ¢ and diffusions that reach ¢ through her. Thus, the informativeness of j’s
action to ¢ can be written as a weighted average of the probabilities that j’s action matches
the state of the world at different conditioning sets of j. This establishes local alignment

of interests.

5.3 Strong efficiency

Theorem 2 shows that under conditional independence of observed neighbors’ actions, lo-
cal alignment of interests implies global alignment of interests. Formally, let 1)* be the

long-run play when all individuals in a network adopt empiricist learning rules and smooth
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decision rules. Strong efficiency on clique trees is established by inductively applying the
following implication of Lemma 3 and Lemma 4: for an individual to aggregate informa-
tion better under an alternative symmetric feasible stationary function of play ¢ than she
does under v)*, some of her neighbors must aggregate information better under 1/ than they
do under ¢*.

Theorem 2. Fix an objective environment (G, H, (¢;)icn). Let 1* be the stationary func-
tion of play induced in the long run by all individuals adopting empiricist learning rules
and smooth decision rules. If G is a clique tree then 1* is strongly efficient within the class

of symmetric feasible stationary functions of play.

Proof. Suppose to the contrary that there exists some symmetric feasible stationary func-

tion of play ¢ such that for some 1,

Pr(ii(w) = 0) > Pr(i(w) = ).
Then there must exist some M; C N; U {i} and r € {1, ..., R} such that
Pr(i;(w) = 0|0, My(T) = My, (1) = 7) > Pr(¢f (w) = 0|0, My(1) = My, ri(7) = 7).

Take 7 to be the smallest round such that the above inequality holds for some ¢ and some

gi = Pr(¥; (w) = 010, M;(7) = {i}, ri(7) = 1) > Pr(vs(w) = 00, M;(7) = {i},ri(7) = 1),

that is, the above strict inequality cannot hold. Thus M, includes some of 7’s neighbors,
which also implies that r > 2.

Since individuals use the optimal predictor under ¥*, by Lemma 3 and symmetry of
play, 1) is strictly more likely to match the state of the world at conditioning set (M;, )
than does 1} only if the action of some neighbor of 4 is more informative to 7 under ¢ than

under v*. That is, there exists some j € M;\{i} such that

Pr(¢;(w) = 010, My(1) = M, ri(1) = 71) > Pr(l/_);(w) =010, M;(1) = M;, (1) = 7).
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By Lemma 4, this means that there must exist some M; C (N;\(N;U{i}))U{;j} such that

Pr(y;(w) = 016, M;(T) = M;,r;(T)
> Pr(¢i(w) = 016, Mj(1) = M;,ri(1)

)

r—1
r—1).

J

This contradicts that 7 is the smallest round in which someone can be made strictly better

off at some conditioning set. 0

Theorem 2 identifies a condition on the underlying network that ensures strong effi-
ciency regardless of the timing of signal arrivals and the quality of private signals. On a
tree, the informativeness of a neighbor’s action is summarized by a sufficient statistic and
the overall informativeness of the actions of one’s neighbors is increasing in each of these
sufficient statistics. Inductively, better information aggregation starting from the leaves of
a tree helps information aggregation towards the root of that tree. Since cliques, or com-
plete subgraphs, do not add confoundedness of sources, the above intuition generalizes to

clique trees.

6 Challenges to efficiency

This section explains the challenges to generalizing Theorem 2. It includes a formal con-
verse, Theorem 3, showing that on any network that is not a clique tree, strong efficiency
fails for some diffusion process and signal structure. Recall from Lemma 3 and Lemma
4 that clique trees possess two key properties. First, observed neighbors’ actions are al-
ways conditionally independent. Second, an individual optimizes the informativeness of
her action to her neighbors exactly by optimizing her information aggregation at each of
her conditioning sets. Theorem 3 generalizes the intuition of two examples: one fails the
first property of clique trees and not the second; the other fails the second property and
not the first. These examples are presented in Subsections 6.1 and 6.2. The converse is
presented in Subsection 6.3. Subsection 6.4 explores whether it is the strong notion of ef-
ficiency that demands a restrictive class of networks. The short answer is no. The general
forces that lead to failure of strong efficiency as illustrated in Subsections 6.1 and 6.2, when
coupled with opportunities for favor trading across rounds, can result in failure of Pareto

efficiency. Finally, Subsection 6.5 illustrates the implications of asymmetric environments,
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where asymmetry comes from either the underlying environment or individuals’ play.
In each example of this section, ¢* denotes the stationary function of play induced in

the long run by all individuals using empiricist learning rules and smooth decision rules.

6.1 Failure of conditional independence of neighbors’ actions

The following example shows that when neighbors’ actions correlate, it is possible to dis-
tort downward the individual informativeness of some neighbor’s action to break the cor-

relation in a way that improves the overall informativeness of all neighbors’ actions.

Example 1. An objective environment has G = {{1,2},{1,3},{2,4},{3,4}}, R = 3,
Pr(ry = 1) = 1,Pr(rp = 2) = Pr(p = 00) = Pr(13 = 2) = Pr(73 = 00) =~ 0.5, Pr(my =
3)~ 1, and (q1, q2, 3, 94) = (0.5 4+ €,0.75,0.9,0.75) for ¢ > 0 small.

There exists a symmetric feasible stationary function of play where individual 2 plays

a suboptimal strategy that makes individual 4 strictly better off compared to 1V*.

Proof. The first panel of Figure 2 plots the network, which is not a clique tree. The
second panel illustrates the flow of information when 7 = (1, 00,00, 3), which occurs
with probability close to 0.25. The third panel illustrates the flow of information when
€ {(1,2,2,3),(1,2,00,3), (1,0, 2,3) }, which occurs with probability close to 0.75. In
both cases, information flows from individual 1 to individuals 2 and 3 and then to indi-
vidual 4, who chooses an action based on what she observes from 2 and 3 and her private
signal. The difference is that in the second panel neither 2 nor 3 receives their private signal
while in the third panel at least one of them does.

Consider v* first. Since ¢» > ¢, individual 2 passes onto individual 4 her private
signal if she receives it, as = 9, and otherwise passes on the action of individual 1,
as = ap = s1. Similarly individual 3 chooses as = s3 if he receives his private signal and
otherwise chooses a3 = a; = s;. Thus, as and a3 are perfectly correlated when neither
individual 2 nor 3 receives their private signal, and a, and a3 are conditionally independent
otherwise.

Here optimally, individual 4 chooses a4 = s4 when as # a3 or as = a3 = s4. The key

question is whether individual 4 would follow the consensus actions of individuals 2 and 3
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Figure 2: The network and key diffusions in Example 1

ol

network G as = asz = S as, az conditionally independent

when as; = a3 # s4. The informativeness of a; = a3 is summarized by the following ratio

Pr(as = az = 010, My(1) = {2,3,4},r4(7) = 3)

Pr(as = ag = —0|0, My(1) = {2,3,4},r4(1) = 3)
0.25(05+ €) + 0.25(0.5 + €)(0.75) + 0.25(0.5 + €)(0.9) + 0.25(0.75)(0.9)
~0.25(0.5 — ) + 0.25(0.5 — €)(0.25) + 0.25(0.5 — €)(0.1) + 0.25(0.25)(0.1)
Pr(sy = 6|60)
Pr(sy = —0|0)’

~2.860 < 3=

This means that under ¢*, individual 4 always chooses a4 = s4.

Now consider an alternative stationary function of play ¢ where individual 2 ran-
domizes with equal probabilities between 1 and —1 when she does not receive her pri-
vate signal. This change breaks the correlation between ay and a3. Then from Pr(ay =
016, My(1) = {2,3,4},74(7) = 3) =~ 0.625 and Pr(az = 0|0, My(7) = {2,3,4},74(7) =
3) &~ 0.7+ 0.5¢,

Pr(as = az = 010, My(1) = {2,3,4},74(7) = 3)
Pr(as = ag = =010, My(1) = {2,3,4},r4(7) = 3)

(0.625)(0.7 + 0.5¢) 380 > Pr(sy = 0|0)

7(0.375)(0.3 — 0.5¢) Pr(sq = —66)
This means that when as = a3 # s4, individual 4 is now strictly better-off choosing
a4 = ay = ag than choosing a, = s4. O
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The key intuition of this example is that the correlation between the actions of individu-
als 2 and 3 when they jointly receive low-quality information from individual 1 downgrades
the average informativeness of their consensus actions to individual 4. Note that correla-
tion between different information sources does not hurt learning. Individual 4 correctly
learns the correlation structure of the actions of individuals 2 and 3, but it is because she
cannot distinguish whether the second panel or the third panel of Figure 2 takes place that
she disregards her neighbors’ actions altogether. Furthermore, since the private signal of
individual 1 is of low quality, the modification made in the alternative function of play
hurts individual 2 little but lends noticeable help to individual 4.

Finally, notice that by setting R = 3, I ensure that this example does not fail the second
property of clique trees. In this example, individual informativeness of each neighbor’s
action is indeed optimized by the neighbors’ selfish learning. Intuitively, failure of the
second property requires that an individual hear from some neighbor who himself faces
confoundedness of sources, that is, he heard from another neighbor who had heard from
some other neighbor. This chain is not possible when R = 3. The purpose of this technical
trick is to separate the importance of each property, showing that the failure of one property

does not imply the failure of the other.

6.2 Failure of local alignment of interests

By local observabiliity, the local model of each individual is averaged over different dif-
fusion realizations. This means that an individual may play optimally to an average dis-
tribution that pools some diffusions irrelevant to her neighbors. In other words, the infor-
mativeness of an individual’s action to her neighbors is not necessarily maximized by her

playing optimally at each of her conditioning sets, as is the case in the following example.

Example 2. An objective environment has G = {{1,2},{1,3},{2,4},{3,5},{4,5}}, R =
4, Pr(m; = 1) = Pr(mp = o0) = 0.5,Pr(mp = 2) = Pr(ry = 3) = 1,Pr(r3 = o0) =
Pr(ms = o0) = 1, and (q1, q2, 43, 94, q5) = (0.9,0.5+¢,0.5 +¢,0.7,0.7).

There exists a symmetric feasible stationary function of play where individual 4 plays

a suboptimal strategy that makes individual 5 strictly better off compared to 1V*.

Proof. The first panel of Figure 3 plots the network, which is geodetic but not a clique tree.

The second and the third panels of this figure illustrate the two main realized diffusions of

32



Figure 3: The network and key diffusions in Example 2

network GG s = as = 51,445 s = Qg = S9,4 — 5

this objective environment, each occurring with probability approximately 0.5. On the
second panel where individual 1 receives his private signal in round 1, individual 5 takes
action in round 3 after observing the action of individual 3. On the third panel where
individual 1 does not receive his private signal, individual 5 takes action in round 4 after
observing the action of individual 4.

Under v*, individual 2 passes onto individual 4 the private signal of individual 1 when
she hears from him and passes on her own private signal otherwise. Thus, individual 4

learns that
Pr(as = 0|0, My(7) = {2,4},74(7) = 3) =~ 0.5(0.9) + 0.5(0.5 4+ €) = 0.7 + 0.5¢ > ¢4.

This means that under 1;* individual 4 chooses a;s = a, when he hears from individual 2
and receives a private signal himself in round 3. Note that while individual 4 plays opti-
mally against the distribution of individual 2’s action averaged over both cases illustrated
in Figure 3, only in the case in the third panel of this figure does individual 4’s action matter
to individual 5. Thus,

Pr(ay = 0|0, M5 = {4},r5(7) =4) = Pr(ss = 0]|0) = 0.5 + €.

Consider an alternative symmetric feasible stationary function of play ¢ where individual

4 chooses a4 = s4 upon hearing from individual 2 in round 3. Then

Pr(ay, = 0|0, M5 = {4},r5(7) =4) = Pr(sy = 0]6) = 0.7.
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Thus 1) makes individual 5 strictly better off, at a (small) expense of individual 4. O

6.3 A converse of Theorem 2

The following theorem generalizes Example 1 and Example 2 to show that on any network
that is not a clique tree, strong efficiency fails for some diffusion process and some set of
private signals.

Theorem 3. Suppose that G is not a clique tree. Then there exist a distribution H of
the signal-timing vector and a vector of signal qualities (q;);cn such that the stationary
function of play 1* induced in the long-run by all individuals adopting empiricist learning
rules and smooth decision rules is not strongly efficient, even within the class of symmetric

stationary functions of play.

Proof sketch. Note that a cycle is incomplete if some individuals in the cycle are not linked.
A cycle of length at least four is chordless if any two non-consecutive individuals in the
cycle are not linked. There are three cases based on the smallest incomplete cycle G’ of G.

Case 1: (G’ is a chordless cycle of size 2m for m > 2.

Case 2: (&' is a chordles cycle of size 2m + 1 for m > 2.

Case 3: (¢’ is a chordal graph, that is, it does not have any chordless cycle.

The construction of H and (g;);en for Case 1 is a generalization of Example 1, where
the correlation in the actions of two neighbors influenced by a common source makes the
individual disregards their consensus actions and breaking such correlation could benefit
the individual. The construction for Case 2 is a generalization of Example 2 where an
individual follows a neighbor’s action that is less informative than her own private signal
exactly when her action will be observed by another neighbor. If she used her private
signal, the latter neighbor would strictly benefit. In Case 3, it can be shown that G’ must
be a cycle of size four with exactly one missing link. Then the construction for Case 1
applies. See Appendix A.9 for the details. [

6.4 Pareto improvement from favor trading

This section explores whether it is the strong notion of efficiency that demands a restrictive

class of networks. First, I show that a weak form of Pareto efficiency holds on all networks:
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compared to the long-run play induced by empiricist learning rules and smooth decision
rules, there is no symmetric play that strictly improves the probability of correct prediction
by an individual without hurting the probability of correct prediction by some other indi-
vidual in some round. This weak efficiency result does not extend to the standard notion
of Pareto efficiency where an individual’s welfare is measured by the probability of correct
prediction pooling over all action rounds. The reason is that compensations can be made
across rounds. An individual may forgo some benefits for her neighbor’s sake when she
receives information early if her neighbor forgoes some of his benefits for her sake when
she receives information late. Examples 3 and 4 build on Examples 1 and 2 and the idea
of compensations across rounds to illustrate how Pareto efficiency may not extend much

beyond clique trees.

Proposition 2. Fix an objective environment. Let 1* be the stationary function of play
induced as the long-run play when all individuals on the network adopt empiricist learning
rules and smooth decision rules. There does not exist any symmetric feasible stationary
function of play 1) such that for each i € N and eachr € {1, ..., R},

Pr(i(w) = 0|ri(7) = r) > Pr(y;(w) = Olri(1) = 1),

with the inequality holding strictly for some 1 and some r.

Proof. See Appendix A.10. 0

This proposition shows that in environments without biases, failure of Pareto efficiency,

as defined below, must be due to some form of favor-trading across rounds.

Definition 9. (Pareto efficiency) Fix an objective environment. A feasible stationary func-
tion of play 1) is Pareto efficient within some class of stationary functions of play if it
belongs to that class and there does not exist any stationary function of play 1 in that

class such that for all 1,

Pr(¢j(w) = 0) > Pr(i(w) = 0),

with a strict inequality holding for some 1.

Following I present two examples showing that forces that present challenges to strong

efficiency, correlation of neighbors’ actions and pooling over diffusions irrelevant to one’s
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Figure 4: The network and key diffusions in Example 3

network G externalities 2 — 4 externalities 4 — 2

neighbors, similarly present challenges to Pareto efficiency when individuals can trade

favors across rounds.

Example 3. An objective environment has G = {{1,2},{1,3},{1,5},{2,4},{2, 5},
{3,4},{3,6},{4,6},{5,6}}, R = 3, Pr(m; = 1) = Pr(mq = o0) = Pr(1s = 1) =
Pr(rs = 00) = 0.5, Pr(1p = 2) = Pr(m = 3) = Pr(y = 2) = Pr(7y = 3) = 0.5, Pr(m3 =
2) = Pr(m3 = o0) = Pr(ry = 2) = Pr(r; = o0) ~ 0.5, and (q1, q2,q3,q4,q5,96) =
(0.5+€,0.75,0.9,0.75,0.9,0.5 + €).

Compared to \*, there exists an alternative symmetric stationary function of play where
individuals 2 and 4 play suboptimally in round 2 to make the other strictly better off in

round 3 in a way that both of them are overall better off.

Proof. The first panel of Figure 4 presents the network and the next two panels illustrate
the two key diffusions where an opportunity for mutually beneficial favor exchange exists
for individuals 2 and 4. The second panel illustrates the case when 71 = 1,74 = 0o and
74 = 3, which occurs with probability close to 0.125. It replicates the flow of information
in Example 1, where under ¢/* the induced correlation between the actions of individuals 2
and 3 causes individual 4 to downgrade their consensus actions and disregard their actions
altogether. The third panel is a mirrored case of the second panel, where individual 6 plays
the role of individual 1, individual 5 plays the role of individual 3 and individuals 2 and 4
swap roles. This occurs with probability close to 0.125, when 74 = 1,77 = 00, 7 = 3.
Similar to Example 1, individual 2 can make individual 4 strictly better off in round

3 by randomizing between 1 and —1 with equal probabilities when she only hears from
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individual 1 in round 2. Similarly, individual 4 can make individual 2 strictly better off
in round 3 by randomizing between 1 and —1 with equal probabilities when he only hears
from individual 6 in round 2. The network structure and the diffusion process are chosen so
that such changes do not affect any other individuals. Moreover, as € gets closer to zero, the
losses in round 2 incurred by individuals 2 and 4 for randomizing rather than respectively
passing on the action of individual 1 and the action of individual 6 shrink to zero. However,
their gains from breaking the correlations remain. This means that for sufficiently small e,

such changes in the play of individuals 2 and 4 lead to a Pareto improvement over ¢*. [

Example 4. An objective environment has G = {{1,2},{1,3},{2,4},{3,5},{4,5}}, R =
4, Pr(ry = 1) = 1/3,Pr(n = 00) = 2/3,Pr(1p = 2) = Pr(p = o0) = Pr(13 = 2) =
Pr(my = 00) = 0.5, Pr(7y = 3) = Pr(ry = 00) = Pr(7 = 3) = Pr(75 = o0) = 0.5 and
(q1,92,93,4q4,q5) = (0.9,0.5 +¢,0.5+¢,0.7,0.7).

Compared to 1)*, there exists an alternative symmetric stationary function of play where
individuals 4 and 5 play suboptimally in round 3 to make the other strictly better off in

round 4 in a way that both of them are overall better off.

Proof. The network is a cycle of length five, as in Example 2. Figure 5 illustrates the key
diffusions. The first panel occurs with probability close to 1/3, when 7, = 1. In this case
both individuals 4 and 5 take action in round 3 without observing the action of the other. In
the second panel, information flows from individual 2 to individual 4 and then to individual
5 as in Example 2. In the third panel, information flows from individual 3 to individual 5
and then to individual 4.

The distribution H is chosen so that under 15*,
Pr(ay = 0|0, My(1) = {2,4},74(7) = 3) = 0.5¢1 + 0.5¢2 = 0.7 + 0.5¢ > qu,

which means that ay = as when M,(7) = {2,4} and r4(7) = 3. If instead individual 4
chooses a4 = s, at this conditioning set, individual 5 will do strictly better in the second
panel of Figure 5. Symmetrically, under ¢*, as = as when M;(7) = {3,5} and r5(7) = 3.
If instead individual 5 chooses a5 = s5 at this conditioning set, then individual 4 will do
strictly better in the third panel of Figure 5. The losses to individuals 4 and 5 in round 3
vanish as € gets close to zero while their gains in round 4 do not. Moreover, such changes

have no effects on other individuals. This completes the proof that a symmetric feasible
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Figure 5: Key diffusions in Example 4

@

®

a4, as irrelevant to neighbors externalities 4 — 5 externalities 5 — 4

stationary function of play that adopts these changes is a Pareto improvement over ¢)*. [

6.5 Asymmetric environments

In general, the overall informativeness of multiple sources of information depends on the
quality of each source, their correlation, and their biases towards either false positives or
false negatives. Intuitively speaking, the restriction of Theorem 2 to clique trees shuts
down the second channel of externalities and the restriction to symmetric environments
shuts down the third channel. The following two examples illustrate how perfect alignment
of interests is hard to achieve in asymmetric environments, even on special networks.
First is an example that shows how strong efficiency could fail even on the simplest

tree if the two states are asymmetric.

Example 5. Consider a setting where Pr(0 = 1) = 3/4 and Pr(0 = —1) = 1/4. An
objective environment (G, H, (q;)ien) has G = {{1,2}}, R = 2, Pr(r, = 1) = Pr(n, =
1) = Pr(m = 2) = Pr(m = 2) = 0.5 and (q1, q2) = (2/3,2/3). Then there does not exist
a feasible stationary function of play that is strongly efficient within the class of feasible

stationary functions of play.
Proof. First, notice that one negative signal is not sufficient to overturn the positive state,

since

Pr(f=—1|s; = —1) Pr(0=—1|sy=—1) (1/4)(2/3)
Pr( =1|s; =—1)  Pr(@=1]sy=-1)  (3/4)(1/3) 3
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This means that whoever receives only her own private signal optimally chooses the pos-
itive action, regardless of the signal realization. This renders her action completely unin-
formative to the individual who moves next. As a result, individual optimality implies that
a; = as = 1 regardless of the realized diffusion and signals.

However, two negative signals would indicate that the negative state is more likely,

Pr(f = —1si = 5o = —1) _ (1/4)(2/3)(2/3) _4 _,

Pr(f = 1|s; = s9 = —1) (3/4)(1/3)(1/3) 3
Thus, the second mover would strictly benefit from the first mover reporting her private
signal rather than her optimal action. This completes the proof that in every feasible sta-
tionary play, there exists an individual that can be made strictly better off at the expense of
the other individual. ]

Second, even in symmetric objective environments, some individual might benefit from

asymmetric play of others, as illustrated by the following example.

Example 6. An objective environment has G = {{1,2},{1,3},{2,4},{3,5}}, Pr(m, =
3) = 1,Pr(m = 2) = Pr(rn = o0) = Pr(m3 = 2) = Pr(r3 = o) = 0.5,Pr(ry, = 1) =
Pr(rs = 1)~ 1, and (q1, q2, q3,q4,q5) = (0.75,1,1,0.5 + ¢,0.5 + ¢€).

There exists a stationary function of play, where the actions of individuals 2 and 3
are biased towards opposite states of the world, that makes individual 1 strictly better off

compared to 1"

Proof. Figure 6 illustrates the diffusions: individuals 4 and 5 receive their private signals
in round 1 and pass on their private signals to individuals 2 and 3 respectively, who may or
may not receive their private signals in round 2; in round 3, individual 1 receives her private
signal and observes the actions of individuals 2 and 3. Since G is a tree, individuals 2 and
3’s actions, as observed by individual 1, are always conditionally independent. Under v*,
as = s, when individual 2 does not receive her private signal and a; = s, when she does.
Similarly, ag = s; when individual 3 does not receive his private signal and a3 = s3 when

he does. Overall,

Pr(as = 010, My (1) = {1,2,3},71(7) = 3) = Pr(az = 0|0, M1(7) = {1,2,3}, (1) = 3)
= 0.5(0.5 4 €) + 0.5(1) = 0.75 + 0.5¢.
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Figure 6: Key diffusions in Example 6
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For ¢ > 0 small, the best predictor for individual 1 given (s, as, az) agrees with the ma-
jority, thus matching the true state of the world with probability approximately equal to
(3)(0.75)%(0.25) + (0.75)% = Z

Consider an alternative feasible stationary function of play 1) where a, = 1 if individual
2 does not receive her private signal and as = s, if she does, and as = —1 if individual 3

does not receive his private signal and a3 = s3 if he does. These modifications give

Pr(as =110 = 1, My (1) = {2,3}, (1) =

r(ag =110 = —1, M, (1) = {2,3},r1(7) = 3) = 0.5,
r(ag =110 =1, My(7) = {2,3},m(7) = 3) = 0.5,
Pr(as =110 = —1, My(7) = {2,3}, (1) = 3) = 0.

3) =1,

o U

That is, from the perspective of individual 1, a, is now conclusive of the negative state and

asz 1s now conclusive of the positive state. In this case the best predictor for individual 1

agrees with the conclusive news if there is one and agrees with her private signal if the

actions of individuals 2 and 3 are inconclusive. This best predictor matches the state of the
. o _7 .27

world with probability 0.5 + (0.5)(0.75) = § > 3. O

This example illustrates that exposure to biases in opposite directions could help with
making better predictions. If the biases were instead in the same direction, then an indi-
vidual who has no intrinsic bias in either state of the world would mechanically appear as
biased in that same direction. Note that two key properties of empiricist learning rules, con-
vergence of learning and long-run individual optimality, do not rely on the environments
being symmetric. To capture time-invariant biases, one can modify the smooth decision

rules accordingly, and given that convergence always holds, one can then focus on study-
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ing the stationary function of play induced by everyone correctly learning her local model.
While it is potentially interesting to study environments with biases, how they spread or

get neutralized, this direction is deferred to future research.

7 Literature review

The majority of papers about learning on networks focus on learning about a single state of
the world. My paper belongs to a relatively small group of papers that model varying states
across time. Sethi and Yildiz (2016, 2019) study endogenous communication networks
with independently drawn states, where plays across periods connect through individuals’
learning about the persistent types of other individuals. Alatas et al. (2016) and Dasaratha
et al. (2018) model states that evolve according to an AR(1) process. Individuals take
action simultaneously in each period after observing their neighbors’ past actions, which
are informative about past states and thus informative about the current state. The key
feature distinguishing my model from these models is the diffusion process within each
period, which randomly decides the order of play and the observation sets.

This per-period feature relates to the social learning literature, where each agent takes
action exactly once and sequentially. Classical papers of this literature are Banerjee (1992),
Bikhchandani et al. (1992) and Smith and Sgrensen (2000); recent papers include, for ex-
ample, Acemoglu et al. (2011) and Lobel and Sadler (2015). The modeling of each period
in my model is more related to these recent papers, but further allows randomness in the
order of play. Moreover, the efficiency metrics of interest in this literature concerns the
n-th individual in large populations, while my efficiency analysis concerns everyone on
the network. The crucial difference between my model and the social learning literature
goes beyond these per-period features. While most papers in this literature study perfect
Bayesian equilibria under common knowledge of the network topology, my model lets in-
dividuals learn relevant information about their environments from repeated interactions.’

The construction of empiricist learning rules relates to the literature on fictitious play
(Brown, 1951; Fudenberg and Kreps, 1993), where individuals asymptotically believe that
the empirical frequency of others’ play is their true stationary play. My paper brings this

’Some exceptions in the social learning literature include, for example, Wiseman (2009), Eyster and
Rabin (2010), Guarino and Jehiel (2013), and Bohren (2016). However, individuals’ behaviors in these
models are also not founded by learning.

41



idea of the learning literature to a network game of information aggregation.

Local observability, and to a lesser extent, local knowledge of the network structure, are
not new assumptions in the network literature. For example, these assumptions are implicit
in DeGroot-style learning models, where each individual takes a weighted average of their
neighbors’ actions. Li and Tan (2020) takes the localness of knowledge to a model of
misspecified learning, where each individual assumes her local network is the full network.
McBride (2006, 2008) studies network formation models with imperfect monitoring of
other’ network relationships, allowing incorrect perceptions of others’ links to arise as an
equilibrium phenomenon. Breza et al. (2018), from their empirical finding that network
knowledge is limited and local, suggest using models with incomplete information of the
network structure. Rather than turning to heuristics, misspecifications or richer information
structure, I build a model with repeated interactions for robust learning.

Since my model is not closely related to any previous work, its concepts of convergence
and quality of information aggregation are not direct analogs of similarly named concepts
in other papers. Convergence in my model means that asymptotically individuals’ actions
depend only on their current observations. Each individual asymptotically learns the long-
run conditional distribution of her observation, based on which she forms a belief about the
current state of the world given her current observation. Knowledge of the distribution of
private observation conditional on the state of the world is exactly what is needed for the
analysis of social learning models by, for example, Acemoglu et al. (2011) and Lobel and
Sadler (2015). In these models, such local knowledge is immediately implied by common
knowledge of the network topology and perfect Bayesian equilibria. On the technical side,
the per-period play of these models satisfies two key assumptions for the convergence re-
sult in my paper. First is the sequential nature of moves, which is crucial to the iterative
argument over action rounds. Second is access to private signals, which allows individuals
to back out the conditional distribution of their observation from the unconditional distribu-
tion. This means that with some small modifications, empiricist learning rules can be used
to provide a learning foundation for these social learning models, relaxing the common
knowledge assumption of the network topology and of opponents’ play.

Using a model very different from mine, with only one state of the world and individ-
uals communicating their beliefs over time as more information about that state arrives,

Li and Tan (2020) identify clique trees as the necessary and sufficient condition for strong
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efficiency.® While this result sounds similar to my result on quality of information ag-
gregation, failure of efficiency in their model must come from inferring mistakes induced
by misspecified beliefs about the network structure. In contrast, individuals in my model
always correctly learn the conditional distribution of their observations. It is local observ-
ability and coarse communication that give rise to an endogenous form of misalignment of

interest, challenging social optimality.

8 Conclusion

This paper proposes a novel model of information diffusion and aggregation that allows a
separation between learning about the environment and aggregating information about the
current state. Empiricist learning rules abstract from the details of the environment, focus-
ing directly on the relevant object of learning, that is, the distribution of private observation
conditional on the true state of the world. In stationary environments, empiricist learning
rules achieve asymptotic learning of the local environment, and thus asymptotic individual
optimality. I study convergence of play and efficiency of information aggregation when
all individuals use empiricist learning rules and smooth decision rules, which are technical
modifications of optimal decision rules.

In this paper, convergence of play means that asymptotically individuals’ actions de-
pend only on their current observations. If convergence holds then the long-run quality
of information aggregation, including for example, how likely individuals’ actions agree
with the true state of the world or agree with each other, can be evaluated at a station-
ary play. I show that if all individuals adopt empiricist learning rules and smooth decision
rules, then play converges for all objective environments. The proof uses an inductive argu-
ment on action rounds. Convergence of play in previous rounds means that the conditional
distribution of an individual’s observation in the current round converges to a stationary
distribution. Empiricist learning rules then ensures asymptotic learning of this stationary
distribution. Finally, convergence of beliefs leads to convergence of play under smooth
decision rules. Note that the conditional distributions of an individual’s observation at
different pairs of an observation set and an action round are all linked together by the fun-

damentals of the underlying environment. However, empiricist learning rules essentially

8See Proposition 2 of Li and Tan (2020).
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treat these conditional distributions separately. While forgoing some information, this fea-
ture avoids contamination of learning from later rounds to earlier rounds. This is the exact
reason why the inductive argument works.

My analysis on quality of information aggregation focuses on the long-run probability
that each individual’s action matches the true state of the world. Despite individuals’ lim-
ited knowledge of the network structure, local observability, selfish and myopic motives,
the long-run play induced by empiricist learning rules and smooth decision rules achieves
strong efficiency on clique trees. Specifically, it maximizes each individual’s probability
of matching the state of the world within the class of stationary plays that treat the two
states symmetrically. Two key properties of clique trees ensure this result. First, neigh-
bors’ actions are conditionally independent, so their overall informativeness is maximized
by maximizing the individual informativeness of each neighbor’s action. Second, an indi-
vidual’s action is most informative to her neighbors when it is optimal to herself.

I then identify several distinct reasons for why efficiency of information aggregation
is likely to fail in general circumstances, including a weak converse to the positive effi-
ciency result. On any network that is not a clique tree, there exist some diffusion process
and private signals such that the long-run play induced by empiricist learning rules and
smooth decision rules is strictly dominated by some symmetric stationary play. This re-
sult generalizes the intuition of two examples that speak to two key properties of clique
trees: conditional independence of neighbor’s actions and local alignment of interests. In
one example when the actions of two neighbors are conditionally correlated, a suboptimal
play by one neighbor might break this correlation in a way that improves their overall in-
formativeness. In another example when the flow of information to an individual affects
both the quality of an observed neighbor’s action and whether her action is observed by an-
other neighbor, a suboptimal decision given the average quality of the action of the former
neighbor may be optimal to the latter neighbor. Moreover, these forces similarly present
challenges to Pareto efficiency when individuals can trade favors across rounds. While
efficiency comparison in my paper focuses on environments without biases, it is also noted
that exposure to biases in opposite directions may help with information aggregation.

There are several directions for future research. One direction is to formalize the ex-
tension of my convergence result to richer settings, thus providing a learning foundation

for a rich class of games of information aggregation. More specifically, my model presents
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a generalizable two-step framework. In the first step, one would build a model where the
game of interest is played repeatedly, and construct learning rules that ensure convergence
of learning about relevant elements of the environment. In the second step, one would
then analyze the asymptotic play of the multi-period model given individuals’ asymptotic
learning, thus providing a prediction for the outcome of the one-period game. For exam-
ple, if the two-step framework is adapted to the context of social learning, it would predict
the same outcome as the perfect Bayesian equilibria studied in papers that assume com-
mon knowledge of the underlying objective environment. That is, the two-step framework
would achieve the same predictions as these papers, while making only minimal assump-
tions on individuals’ knowledge of the environment.

Finally, if my model is taken seriously as a model of how people interact on social
platforms, it has the following implications. First, access to independent private news
is important for an individual to learn the reliability of information from her neighbors.
Second, since social networks are unlikely to be clique trees, social platforms are unlikely
to achieve social optimality of information aggregation. Future research could build on
these baseline findings and the various challenges to efficiency illustrated in this paper
to study, for example, policies that improve observability of information paths and the

implications of persistent biases in the context of social platforms.

A Appendix

A.1 Proof that local models are well-defined

To show that every local model is well defined, I show that when ¢ acts in round 2 or later,

she could hear from any subset of her neighbors and possibly also receive a private signal.

Lemma Al. Take any E € &;. For every nonempty set M; C N; and r € {2,..., R},
PrP(M;(1) = M; U {i}, (1) = ) > 0 and Pr¥ (M;(7) = M;,r;(1) = 1) > 0.

Proof. Construct 7 € {1,...,R,00}" with 7, = r,7; =r — 1 forall j € M, and 7; = o0
for all j ¢ M, U {i}. Then M;(t) = M; U {i} and r;(7) = r. Similarly, construct
™ € {l,..,R,00}" with 7/ = r — 1 forall j € M; and 7; = oo for all j ¢ M;. Then
M;(7") = M, and r;(7") = r. The claim follows from the assumption that the distribution

of the signal-timing vector has full support. O
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A.2 Proof of Lemma 1

To see the second equation of part 2, recall that private signals are independent of the
diffusion process and across individuals, conditional on the state of the world. Take any
nonempty set M; C N; and r € {2,..., R}. Forany 7 € {1, ..., R, 00}" such that M;(7) =
M, U {i} and r;(7) = r, the actions of i’s neighbors in round r — 1 are not affected by i’s

private signal. That is, for such 7,
PrP(ayy,, 550, 7) = PrP (a0, 7)Pr¥(s:|0, 7) = Pr¥(an, |0, 7)Pr¥ (s4]6).
Then,

fZE<aMi7 81’9, Ml U {Z}v T)
_ 3 Pr¥(an,, 5,10, 7)Pr”(r|Mi(7) = M; U {i}, ri(7) = 1)

T: M (7)=M;U{i},r (T)="

= Pr(s40) fF (ans, |0, M; U {3}, 7).

It follows that

fEan, sl My U (i}, r) = D Pr(0) Pr(sil0) f (ans, |0, M U (i}, 7)

0e{-1,1}

= Z PI'(Si’ e)sz(aMz

0e{-1,1}

0, M; U{i},r).

Furthermore, the matrix (Pr”(s;, 0))s, 0e{-1,1} = %(PrE(si|9))si7ge{_1,l} is full rank since
¢; > 1/2. This completes the proof of part 1 of the lemma.

Finally, the first equation of part 2 relies on the assumption that the arrivals of private
signals are independent across individuals. Conditional on ¢ not having received her private
signal by round r — 1, the actions of those neighbors of ¢ that act in round » — 1 depend only
on the arrivals and realizations of the private signals of individuals other than . Formally,
take any two signal-timing vectors 7 and 7’ such that 7; = 7} forall j # i, 7; > r, 7] > r
and M; = M;(7)\{i}, it holds that Pr¥(ay.|0,7,s) = Pr¥(a,|0,7,s) for all ay;, €
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{—1, 1}/M:l This implies

fF (a0, M;,r)
> rrti(rymnt 2os Hoi(mi) Hi(7i) P (s]0)Pr® (any, |6, 7, 5)
> rti(ry=na; H—i(7-1) Hi(T;)
Pro(7i > 1) 30, i sooyent; 2o Hoi(T-0)PrP(s|0)Pr(ang, |0, (1-i, 00), 5)
Pr¥(r; > r) Zr,i:Mi(r,i,oo):Mi H_i(7-)
Pr(r = 1) Zr,i:Mi(T,i,r)\{i}:Mi > H_i(73)Pr®(s|0)Pr® (any,
Pro(m =) 30, e giyens, H-i(7-0)
=fF(ay,|M; U {i},r,0).

0,(1_i,7),8)

A.3 Proof of Proposition 1

Notice that by Lemma 1, there is a one-to-one mapping ® : (fF(.|M; U{i}, 7)), — fF
between the stationary unconditional distributions of an individual’s observation (when she

receives her private signal) and her local model. Moreover, this mapping is linear.

[=0) =1.

The linearity of ® then implies that for every ¢ > 0, there exists € > 0 such that

By the Strong Law of Large Numbers,

Pre (ELrgg!I(ﬁ(.yMi Ui}, ) (h))asr — (FECIMs Ui}, 7)) g,

t—o00

— PrF <tllrgo 1 {F;’(h;?) C B€(fiE)} _ 1) .

1= P (Tim 1{ (B ((fi( 1M Ui}, 1) (h)ane)) € BA@(FECIM U L)) | =1)

Since lim;_,o0 s (h?)(F€ (ht)) = 1 by the definition of empiricist learning rules, part 1 of
the proposition follows.

For part 2, construct a stationary belief-updating rule 3} : h;; — b; € A({—1,1}) such
that for all observation h;; and all § € {—1,1},

B Pr¥(hi |0, = 0)
*(hi)(0) = '
B (hi) (0) PI‘E<hit|0t =0)+ PI‘E<hit|9t = —0)
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It follows from part 1 that

Pr (Jim 18R ha)(60) = B (hao)ll = 0) = 1.
Recall that o is a technical modification of the symmetric optimal stationary decision
rule 67, converging to G} as t — oo. Moreover, the decaying smoothing parameter of o
ensures that convergence of beliefs leads to convergence of play. Thus,

—0) =1

o (Bi(hi™" ha))(00) = 07 (B (har)) (6)

t—o00

pPrf < lim

This implies part 2 of the proposition.

A.4 The inductive step in Theorem 1

Lemma A2. Fix environment E = (G, H, (q;)ien, (8i)ien, (07 )ien ) where for each i, (; is
an empiricist belief-updating rule and ;' is a smooth decision rule. Consider an individual
i, a nonempty subset M; C N; and a round r € {2, ..., R}. If there exists some stationary
function 1) such that for every j € M,,

prP (nm V{M;(r) = M; U {i},7:(ry) = rH|w; (e, R 1) — by (wp)]| = o) _ 1,

t—o00

then whenever i’s observation set is M; or M; U{i} and i’s action round is r, i’s belief and

play converge. That is,

1) for some unconditional distribution f;(.|M; U {i}, ), it holds for all € > 0 that
Pr (Yim ~,(h1) ({f; € F: | F1CIM U i}r) = ACIML U Giho)] > ) = 0) = 1
2) for some stationary belief-updating rule (3%,

t—o00

Prf | lim Z Hha = (a]\/{i;ff’r) or hi_t*: (ans, 7)} =0 =1;
x| Bi(hy ™, hie) — B (hg) ||

an;,Si
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3) and for some stationary function 1} of i’s play,

Pr® | lim Z {M;(r) = M; or Mi(7;) = M; U{i}, and ri(m) =1} _

~ _ 0] =1
X|Ji e, A1 1) = 4 (wi) |

t—o00
an;,Si

Proof. From 1y, construct for each ay;, € {—1,1}Ml and s; € {—1,1},
filans,, si,r|M; U {i},r) = PrE(y, (w) = ang,, 55| M;(1) = M; U {3}, ri(1) = 7).

By Lemma 1, for each nonempty set M; C N; and action round r € {2, ..., R}, there is a

one-to-one linear mapping ¢ : f;(.|[M;U{i}, r) — (f; (|0, MyU{i}, 7)., fi(.0, My, 7))oeq—1.1}-
Construct a hypothetical empirical distribution that takes draws from f;(.|M; U {i},r)

such that for all ay;, € {—1,1}M:ls; € {—1,1} and history w? of system states,

_ Zi’:l 1{1;Mi(wt') = an,, S = 56, 7i(Tw) = 1}
Sobo U Mi(r) = My U {i},ri(7y) =1}

]Ei(aMi; si|M; U {i}, r)(w")

if the denominator is positive, otherwise set f;(aaz,, s;| M; U {i},7)(w') = 1/(2Mil+1),

By the inductive hypothesis,
Pr (T |L£:(1M; U {i},r) (BE) = JiCIM; U i}, r) (@) = 0) = 1.
Moreover, by the Strong Law of Large Numbers,
Pr” (lim | :(|M; U {7, r) (@) = M U i) = 0) = 1
It follows that
Pr® ((im [|fi(1M4 U (i) (b)) = G0 (1)) = 0) = 1.

By an argument analogous to the proof of Proposition 1 and using the linearity of the
mapping ¢™¢", it can then be shown that ~; asymptotically puts zero probability on local
models that induce an unconditional distribution at observation set M; U {i} and action

round 7 of some e-distance away from that induced by f;. That is, part 1 of this lemma
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holds.
Construct 3; such that for every ay;, € {—1,1}Mil s, € {~1,1} and 0 € {-1,1},

2% _ fi<aMi7$i|07Mi U {i},?”)
Bi (aMi’ 31’77')(9) B fi<a1\/[m Si’97 MZ U {2}7 T) + fi(aMm Sil - 67 Ml U {2}7 T)

and
filan, |0, M;, )

" filans |0, My, r) + filans| — 0, My, 1)’

Such a stationary belief-updating rule satisfies part 2 of the lemma.

B} (ang,,7)(0)

To see part 3, recall that smooth decision rule o] converges to the symmetric optimal
stationary decision rule ¢; and ensures that convergence of beliefs leads to convergence
of play. Construct a stationary function of i’s play, ¥, as following. If w induces for i

observation (ayy,, S;, 1), set

(w:{_lﬁgéﬂﬁmmﬁﬁm4)

1 otherwise.

If w induces for ¢ observation (ayy,, ), set

. { —1 if G < &7 (B (anr, ) (—1)

1 otherwise.

Then )* satisfies part 3 of the lemma. O

Finally, notice that the case when ¢ only receives her private signal is similar to the base
case of r = 1. In this case when h;; = (s;, 1), the individual holds correct belief about the
current state, that is, forall § € {—1, 1},

@‘(ﬁf—l’ hi)(0) = 7:(3#77‘)(9) _ qil{size}(l _ qi)1{sﬁé9}7

regardless of history fz’;f’l. Moreover, smooth decision rules imply that asymptotically, an
individual ¢ facing such history reports her private signal. For all w that induces observation
(s4,7) for individual 7, set ¥} (w) = s;.

Together with parts 2 and 3 of Lemma A2, this final argument completes the inductive

step in the proof of parts 1 and 2 of Theorem 1. To see part 3 of Theorem 1, collect part 1
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of Lemma A2 over all possible observation sets and action rounds of each individual ;.

A.5 Proof of the equivalence in Definition 7

It is easy to see that for any given objective environment, a profile of symmetric belief-
updating rules and a profile of symmetric decision rules induce a symmetric feasible sta-
tionary function of play. For the other direction, fix an objective environment and a sym-
metric feasible stationary function of play 1. Since 1 is feasible, it can be induced by

some profile (5);cn of stationary belief-updating rules and some profile (/);cn of sta-

tionary decision rules. Consider an observation (ayy,, ) of individual ¢, under symmetry

of 9,

{(7,5,¢) : (1, s, () induces observation (ay,, ) for i}

={(7,s,() : (1,—s,1 — () induces observation (—ay,,r) fori}.
Call this set Q). By the symmetry of v);,

5-7{<61/<GM17T)>(1) = Pr(&i(TﬂSa <) - 1|(7-7 S7<) S Q)
(Yi(1,—5,1 = ¢) = —1|(1,5,0) € Q)

Similarly, &} (3!(ans,, si,7))(1) = 74(B{(—ans,, —si, 7)) (—1) for every history (auy,, s;,7).

Now, construct symmetric functions (3;);ey and (;)sen from (3!);en and (5))sen. For
each pair (ay,, —au,), set Bi(ans,,7) = Bi(an,,r) and &;(Bi(ans,, 7)) = &(Bi(an,,r));
then set f3;(—an,,7) = 1 — Bi(an,,r) and &;(Bi(—ans,, 7)) = &(Bi(—an;,,r)). Perform
similar construction for cases when 7 receives her private signal. For observations that
never arise, the beliefs induced by the belief-updating rules at such observations can be
determined arbitrarily and symmetrically. Similarly for beliefs that never arise, the decision
rules can be determined arbitrarily and symmetrically at such beliefs. By construction

(B;)ien and (7;)sen induce ¥ and they are symmetric.
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A.6 Proof of two technical properties of clique trees

The first property follows immediately from the existence of a unique shortest path con-
necting any two individuals in G. To see the second property, suppose by contradiction
that for some ¢ € N,j € N; and k € N;\(N; U {i}), there exists some k' € [[},; but
k' ¢ IF}\;. This means that [(k',7) < I(K’,7) + [(j,1), that is, the shortest path connecting
k' to i does not go through j. This path and the shortest path that goes from £’ to i through
j form a cycle. This cycle includes k£, but it is not complete because k and ¢ are not linked.

This contradicts that G is a clique tree.

A.7 Proof of Lemma 3

By property 1 of Lemma 2, {IF}\;};cn, are mutually exclusive. Consider the case that
i ¢ M; and enumerate individuals in M; by ji, ..., jjas,|. By the conditional independence
of private signals and the independence of the instrumental variables, Pr(y,|0,7) =
[T;car, Pr(¢;10,7) for any 7 such that M;(7) = M; and r4(7) = r.

Next, notice that the event that ¢ observes from M; and acts in round r can be rewritten

as a join of independent events

(72 Mi(7) = My, ri(r) = r} = (mjeMi {T : min 1(j, k) + 7 =1 — 1})

kEIF)\;

A (ﬁjeNi\Mi {T : min U5, k) + 75, > r}) N{r:m>r}

kEIF\;

Forall j € M;, let A;; = {T[Fj\i P mingerry,, 1(7,k) + 1 =7 — 1}. Also, let

A= {TN\(U]EM_]F],\Z,) :7; > r and krgl}:n [(7,k) + 1, > rforall j € N;\M,}.
! €1\

It follows from the above decomposition that

Pr(7|M;(1) = M;, (1) =1)

TN\(UjGAIiIFj\i) < A;) H Pr(TIFj\i’TIFj\i € AZJ)
JEM;

=Pr <TN\(U]'EZWZ~IFJ'\~L)

52



Thus,

Pr(a, (w)[Mi(7) = M;, ri(7) =7)
= > Pr(a, (w)[0, 7) Pr(7|M;(7) = My, ri(7) =)

T:M;(T)=M,;,ri(T)=r

-y ¥

T, . . ..
TFj\i €A

TIF. ) .
J ‘7‘]\/Ii|\ZEA”|]VIi‘

HjGMi Pr<z/jj<w)|97 TIFj\ig Ml(T) = Mi; 7"1;(7'> = 7")
Z X HjeMi PT(TIFN TIF;,; € Aij)
TN\(Usenr, TFj) € Ai_>

TN\(UJ-E]MZ,IF].\Z.)E-A; x Pr TN\(UjGI\/IiIFj\i)

=[] Pr(ds(w)|M;(r) = My, ri(r) = ).

JjeEM;

The proof for the case when ¢ € M, is similar.

A.8 Proof of Lemma 4

When r = 2, it must be that M;(7) = {j} and thus cjj\/[” = Pr(v;(w) = 0|0, M;(1) =
{j},rj(1) = 1) = g;. Now consider the case that > 3. Since j € M;(7), (M;(7)\{j}) N
(N;U{i}) = @. By the second property of Lemma 2 and the full support assumption of H,
any observation set of j that satisfies the above condition is feasible, that is, Pr(M;(7) =
M;, M;(1) = M;,ri(t) =r) > 0 forall M; C (N,;\(V; U {i})) U{j} and r > 3. Then
the quality of j’s action observed by i at observation set (M, r) is

it _ 5 ( Pr(M;(r) = M;|My(7) = M;,ri(r) = 7) )
McNAMOEUG) \ X Pr(y;(w) = 0|0, M;(1) = M, Mi(1) = My, ri(t) =71) |
It remains to show that for all M/; C (N;\(V; U {¢})) U {j}.
Pr(&j(w) = (9‘9, Mj(T) = Mj, MZ(T) = MZ',TZ'(T) = T)
:Pr(zﬁj(w) = 6‘6, Mj(T) = Mj,?“j(T) =T — 1)
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For such Mj, let

Alj = {TUkEMjIFk\j . ElT/ S.t. TL/JkEJWjIFk\j TUkEJVI IFk\j M; ( ) M M( ) Mi,ri(T/) = T},

Aj = {TUkEIVIjIFk\j 37 st TL/Jke]\/IjIFk\] TUkeM ITFp\j» M; ( ) M ( ) =r-= 1}'

By Lemma 2, Uyens, I Fy\; € IFj\;. Therefore, conditional on M;(7) = M; and r;(7) =
r — 1, the observation set and action round of ¢ depends further only on I, for j' €
(N; U{i})\{s}. This means that A;; = A;. Furthermore, conditional on j hearing from
M; in round  — 1, 1b; depends only on (7;:, s;, (1) of j' € Ugenr, I F; and on (;. Then,

Pr(y(w)| Mi(r) = My, M;(7) = Mj,ri(7) =)

_ Pl“ TUkeM IFk\JlM( ) M' M( ) ( ) T)
- Z (xPrwj <> M;,r <>=r>>

TUkeM; 1Ey,; €A |TUkEM e M ( )

_ 7-UkeM IFk\]‘M( ) M T'<T) :T_l)
X Pl" Q,D] |TUkeM ITFp\j» M; ( ) M ( ) =r—= 1)
TUkeM IFk\]

=Pr(¢;(w)|M;(1) = My, r;(1) =r —1).

This completes the proof of Lemma 4.

A.9 Proof of Theorem 3

Take a graph G. Denote by C(iy,...,i) a cycle of size L where {i;, 9,11} € G for all
[l =1,....,L and i1 = ¢;. This cycle is complete if any two individuals of this cycle
are linked. A chord of a cycle is a link between two non-consecutive individuals. A cycle
of size at least four is chordless if any two non-consecutive individuals are not linked.
Furthermore, a graph is chordal if all cycles of size at least four have a link between two
non-consecutive individuals.

Suppose that GG is not a clique tree. Then G must have at least a cycle that is not
complete. Take a smallest incomplete cycle C(iy, ..., i1) and refer to this subgraph of G as
G'. There are three cases.

Case 1: G is a chordless cycle of size L = 2m for m > 2.
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Figure 7: The key diffusion in a generalization of Example 1

Pr(7;,,., =m+1) =~ 1 when pis even

Consider a potential path (iy, jo, ..., jm/, imr1) from iy to 7,,, different from the paths
(11,19, ey by Ir1) @A (21, Gomy ooy G2, iyt )- Let I* collect individuals in {éy, ..., 4,41}
that appear in the first path. If m’ < m, there must exist i,,,,%,,, € I such that my >
mq + 2. Then for some m/ and m/, such that 2 < m/, m}, < m/, there is a cycle of size
strictly less than L, C(im, , Gm; 41, -+ Tmg—15 Gy Jmly» Jmhy—15 -+ Jm! +1, Jmy ). Moreover, this
cycle is incomplete because i,,, and i,,, are not linked. This contradicts that G’ is the
smallest incomplete cycle of G. If m’ = m and I* contains individuals other than i; and
im+1, then a similar argument provides a contradiction to G’ being the smallest incomplete
cycle. This concludes that the shortest paths connecting ¢; and i,,,,, include only paths of
length m with no joint elements other than i, and 7,, ;. Suppose that there are p > 0 such
paths other than (i1, 42, ..., 4, Gme1) and (i1, 9m, ---s Gmio, ime1). Denote such a path by
(i1, 4%, oo 52 i) for p' = 1, ..., p.

Consider first the case when p is even. Construct a vector of signal qualities with
¢, = 0.5+¢€, 4, = ¢, =08andgq;,  , = Ay = 0.75 for all p’ = 1, ..., p. Construct the
distribution of the signal-timing vector so that Pr(r;, = 1) ~ 1, Pr(r;,, = m) = Pr(r;,, =
o0) = Pr(

Timss = M) = Pr(r; ., =00) = 0.5, Pr(r, ., =m+1) = Pr(Tj% =m)~1
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forall p’ = 1,...,p, and Pr(7; = c0) ~ 1 for all other 1.

Figure 7 illustrates the subgraph of all shortest paths connecting ¢, and ,,. 1, and plots
the key diffusion for this example when p is even. In this diffusion, ¢; receives his private
signal in round 1. He then passes this signal, a;, = s;,, onto %, i3, and jgl forp =1,...,p.
In round 2, these individuals then simply pass a; onto i3, 72,1 and jg/ forp’ =1,...,p
respectively. This goes on until round m when j{?,; for p’ = 1, ..., p receive their private
signals, which are more informative than a;,. They thus choose A = 8 In round
m, im,+2 and 7, may or may not receive their private signals. If 7,, o receives his private
signal then he chooses a;,,., = s;,.,, otherwise a;,, ., = a;, , = s;. Similarly, if i,
receives his private signal then he chooses a;, = s; , otherwise a;, = a; , = S;,.
In round m + 1, 4,,,1 receives his private signal and hears from J U {i,, 12,7, }, Where
J={j7 0 =1,...,p}. Let M; = J U {ipns2,%m, ims1}-

Notice that when a;,, ., # a;,,, the optimal decision of ¢,,; depends only on his private
signal and the actions of individuals in J. The key is whether consensus posts by 7,2
and 7,, could overturn a decision based solely on 7,,,1’s private signal and actions of her

neighbors in .J. The informativeness of (s;,..,,as) = (;,.,,,5s) is summarized by

Pr(s;, a0, Mi(1) = My, ri(t) =m+1)  Pr(si,.,ss0)
Pr(—=s;, ., —as|0, Mi(1) = M;,ri(1) =m +1) N Pr(—s;,,..,—s7|0)
0.75 2 jeTU iy} H(s5=0)=1(s;==0)
B <0.25) '

If ¢, 42 and 7,, follow the actions of i,,,3 and 7,,_; respectively when they do not receive
private signals, the informativeness of the consensus posts by ¢,,.- and i,, as they reach

Im+1 18 summarized by

Pr(a;,, ., = ai,, = 0|0, M;(1) = M;, (1) = m + 1)

Pr(a;, ,, = a;,, = —0|0, M;(17) = M;,r;(1) = m+1)
~(0.25)(0.5+ €) + (0.5)(0.5 + €)(0.8) + (0.25)(0.
~(0.25)(0.5 — €) + (0.5)(0.5 — €)(0.2) + (0.25)(0.

8)? 0.75
~2.62 < ——.
2)2 0.25

Thus, 4,4+ optimally follows the majority of {s;, . ,a;1 ,...,a;» }, ignoring the posts of
tmio and 7,,. If instead, i,,,- and i7,, randomize equally between 1 and —1 when not re-

ceiving private signals, the informativeness of their consensus posts to %,,1 is summarized

56



by

Pr(a;, ., = a;,, =010, M;(1) = M;,ri(1) =m+1)

Pr(a,, ., = ai,, = =010, M;(17) = M;,ri(1) =m +1)
((05)(05) + (0.5)(0.8))2 0.75
=(05)(05) + (05)(02)2 ~ >% > 025

In this alternative play, their consensus posts can overturn the majority of {s; ., , a1 ,...,a; }
when the winning margin is one. Thus, this change strictly benefits %, 1.

When p is odd, modify the above construction by letting Pr(7;, ., = oo) ~ 1. In the
individually optimal play, 4,1, follows the majority of {a;: ,...,a;» }. In the alternative
play where i, and 7,, randomize equally between 1 and —1 when not receiving private
signals, 7,1 strictly benefits from following these neighbors’ consensus posts when the
majority of {a;1 ,...,a;» } disagree with them but the majority is won by a margin of one.

Case 2: G’ is a chordless cycle of size L = 2m + 1 for m > 2.

Notice that (i1, @2, ..., tm, imt1) 18 the unique shortest path connecting ¢; and ,,,1. The
reason is that if there was an alternative path of length less than or equal to m connecting
11 and 7,,.1, an incomplete cycle of size at most 2m would be formed by elements of
these two paths. This would contradict that G’ is the smallest incomplete cycle. Similarly,
(41, 12m415 --+» Im+3, im2) is the unique shortest path connecting ¢; and 4,, ».

Construct a vector of signal qualities with ¢;;, = 0.9, ¢;,,., = 0.5+ ¢eand g;, ., = 0.7.
Construct a distribution H over the signal-timing vector such that Pr(7;, = 1) = Pr(7;, =
o) ~ 0.5, Pr(r;,,., = m) = 1, Pr(r;,,,, = m+ 1) =~ 1 and Pr(r; = o0) = 1 for
all © € N\{i1,%m+3,%mo}. Figure 8 plots two key diffusions of this example, with each
occurring with probability approximately 0.5. In the left panel, ¢, receives his private signal
in round 1 and has it spread to %,, and ,,, 3 in round m. Both of these individuals pass on
this information to %,,,; and %,,.o respectively. In round m + 1, individual %,, 5 would
consider between the action of i,,,3 and her own private signal, but her decision will not
be observed by i,,.1, who already takes an action in the same round. In the right panel,
1m+3 Teceives his private signal in round m and passes that onto i,,,2, who will consider

this piece of information with his own private signal to make a decision later observed by

Im+1-
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Figure 8: The key diffusions in a generalization of Example 2

Qipvo = Wiy = ST, Img2 7 Il Qippro = iz = Sipyss bm42 7 tm+l
Under the constructed diffusion process,

Pr(aim+3 = 0|07 Mim+2 (T) - {im+3v Z.771-1—2}7 Timt2 (T) =m + 1)
%0.5(0.9) + 0.5(0.5 + 6) =0.7+0.5¢ > Qipsn

It follows that at observation set M; ..(7) = {im43,ims2} and action round r; , ,, indi-

vidual ,,, optimally chooses a;,,,, = a;,,,,. This gives
Pr(a;, ., =010, M, ., (7) = {im2}, 70, (T) =m+2) = Pr(s;,,,, =0|0) =05+ €.

If instead ¢, chooses a;,,., = then

Sim+2’
Pr(ai,, ., =010, M;, ., (7) = {ims2},7i,. (T) = m+2) = Pr(s;,,,, = 0|6) =0.7.

Such change strictly benefits ,, 1 at a small expense of 7, .

Case 3: (&’ is a chordal graph.

Since G’ is an incomplete chordal graph, it must be of size at least four and have a
chord. Without loss of generality, suppose that 7; and 7, are linked for some [ € {3, ..., L —

1}. Then C(iy, ig, ..., 9—1, %) and C(4;, 441, ..., i1, i1 ) are two cycles smaller than G’. These
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two cycles must be complete because otherwise it contradicts that G’ is a smallest in-
complete cycle. Since G’ is incomplete, this means that there exist j € {is,...,7,_1} and
k € {i;41,...,i,} that are not linked. In fact, C(i1, j,1;, k) is a smallest incomplete cy-
cle of G. Consider the subgraph of GG consisting of all shortest paths connecting j and
k. Denote by J = {j1,..., jp} the set of individuals in this subgraph other than iy, j, i
and k. Construct a vector of signal qualities with ¢; = 0.5 + ¢, ¢;;, = ¢;, = 0.8 and
QU = j, = 0.75 for all p’ = 1, ..., p. Construct the distribution of the signal-timing vector
so that Pr(7; = 1) = 1, Pr(r;, = 2) = Pr(1;, = 00) = Pr(m, =2) = Pr(r, = 00) = 0.5
and Pr(r; , = 2) ~ 1forall p = 1,...,p. Furthermore, let Pr(7, = 3) ~ 1if pis even
and let Pr(7, = o0) &~ 1 if p is odd. Similarly to the general example constructed in Case
1, this environment fails strong efficiency because under the individually optimal play, the
correlation in the actions of ¢; and i; makes £ disregard their consensus actions. The alter-
native play where either i; or 7; randomizes equally between 1 and —1 when not receiving
their private signals increases the informativeness of their consensus actions sufficiently to
strictly benefit k.

A.10 Proof of Proposition 2

Suppose to the contrary that such ¢ exists. Take r to be the smallest round such that for
some i € N, Pr(¢;(w) # ¥f(w)|r;(t) = r) > 0. Since the local environment of i does
not change at any conditioning set (M;, ) for M; C N; U {i}, i can not do strictly better at

these conditioning sets than she does under 1;* That is,

Pr(y; (w) = 0]0, My(1) = M, ri(1) = r) > Pr(¢i(w) = 0|0, Mi(1) = My, ri(7) = 1)
for all M; C N; U {i}. The equality holds if and only if Pr(¢}(w) = v;(w)|M;(1) =
M;,r;(1)) = 1. The reason is that when 7 is indifferent between a; = 1 and a; = —1, the
only symmetric response is to randomize between the two actions with equal probabilities.
The inequality holding as an equality for all M; C N; U {i} would contradict the choice
of r as the smallest round where play differs between 1)* and 1. The inequality holding
strictly for some M; C N; U {i} would mean that i is strictly worse off in round r under 1,

a contradiction.
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